
AD-A243 700 Q
~IW lI l~Ill i 1111 111 l lli . I

AFIT/GCE/ENG/9ID-01 f r ' -,"-

IMPLEMENTATION OF AN OBJECT-ORIENTED
FLIGHT SIMULATOR D.C. ELECTRICAL SYSTEM

ON A HYPERCUBE ARCHITECTURE

THESIS

Guy R. Booth

Captain, USAF

AFIT/GCE/ENG/91 D-01

Aoproved for public rele; listribution unli'mited

91-19012

AFIT/GCE/ENG/91D-01

IMPLEMENTATION OF AN OBJECT-ORIENTED FLIGHT SIMULATOR

D.C. ELECTRICAL SYSTEM ON A HYPERCUBE ARCHITECTURE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Engineering)

Guy R. Booth, B.S.

Captain, USAF I ,

• ib ; ,)' 2 ~

December, 1991

Apprrvcd fc,- public rcloase, distribution unlimited

F orm ApprovedI
REPORT DOCUMENTATION PAGE oMB No o4.088

.olc ~oeO rq O.rzen *2r :hisftlec,:on f fonrmaticn s inel },erae ,-0ur Der ' nsDorse n', lg tie time tor ewewing instrL-ci-s., e3'rr' p, s. :- - ., c r'ec I
-latne ,ng 3"d ainti,'rqg -e =3ati neeaea. and C ioteung en e, :e ::ie-icn o ntormaticn Sena .cmrrentts regarding tl'is burden estimate r n, :t't ,szet 2t ,.s
:O It' " : '?ni)r13tCn, nc ,',ng suqgeS11Cn% ".r -aawctr. "r' s ur:en i '.1 n-e , t n -eaad-rWers ,e-.ces. ',re,"orate 0o, nformnatiOn loeriitOns 1"d Oa s '5 5 erce
Da, H-.t-.' -t '2C4 Ar'n.qtcn, A. 22-4302 andl to t-e)tfce)' '.ia,,aqenre, ird Buoqe! ioe'-cr Reduction Project 10704-038), Aan,,tm'IC^i3

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1991 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

IMPLEMENTATION OF AN OBJECT-ORIENTED FLIGHT SIMULA-
TOR D.C. ELECTRICAL SYSTEM ON A HYPERCUBE ARCHITEC-
TURE

6. AUTHOR(S)

Guy R. Booth, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583
AFIT/GCE/ENS/91D-01

9. SPONSORING,/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING

Capt Stuart Bishop AGENCY REPORT NUMBER

AL/HRAD
Williams AFB, AZ 85240-6457

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

J The Software Engineering Institute developed an Object-Oriented Paradigm for Flight Simulators based on the
concept of mapping the behavior of physical objects from an aircraft into an object-oriented software architec-
ture. This mapping is a "semi-formal" method that maps objects to a hierarchy that has three logical layers:
objects, systems, and executives. The paradigm was developed with the idea of implementing the derived simu-
lation design on a parallel or distributed computer architecture, but no explicit design features are provided for
implementing the design on a parallel computer.

(" This research addresses the issue of determining what extensions (if any) are required to implement a parallel
version of the D.C. Electrical System Simulation (DESS) that the SEI developed as an example on using their
paradigm. The parallel DESS design is implemented and tested using Ada on an Intel iPSC/2 Hypercube. An
analysis of the performance of the simulation is presented, and some conclusions are made about implementing
- parallel design based on the SEI Object-Oriented Paradigm for Flight Simulators.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Parallel Processing, Object-Oriented, Flight Simulation, Parallel Computers 147
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 S ar'dard :r'r 298 Dev 2 89

213- " 32

Acknowledgments

One of the enjoyable parts of writing a thesis is getting to thank everyone that helped you get the

task done, and there are several peop?- to whom I owe a hearty "thank-you."

First, I owe a special thanks to my AFIT instructors. When I first got to AFIT I had no idea what an

abstract data type was, much less what an object-oriented design was, and I was at best an average "hacker"

when it came to writing code (in FORTRAN, BASIC, or sometimes C). My idea of software engineering

was flow charts and no goto statements. Through the efforts of all my AFIT instructors I learned what an

abstract data type is, what an object-oriented design is and how to apply "software engineering" principles

to the design of both of them.

I owe a great deal of thanks to my thesis committee members. Dr Thomas Hartrum, Dr Gary Lamont

and Maj William Hobart. All contributed significantly to this thesis effort nd my knowledge about the

topic of parallel computing. Maj Hobart's course on Parallel Computer Architectures and Dr Lamont's

course on Parallel Algorithms were excellent foundations from which to build my thesis work, and Dr

Hartrum's assistance helped to keep my thesis work focused on the research issues. MAJ Eric Christenson

provided valuable insights into object-oriented simulation and using Ada, and Rick Norris more than once

got me out of some tough spots with problems getting things working right on the hypercube.

I owe a sincere thank-you to the other GCE-91D, GCS-91D and GE-91D students who did research

work using the AFIT Hypercube. Their willingness to share "the cube" when I needed to run my simulations

is appreciated. You where all true gentlemen and scholars (except for the time one of you had all eight

nodes of the cube all weekend!).

17 -lv I would like to thank my wife, Jennifer, for her wonderful support during this past eighteen

months. I could not have made it through the AFIT program without her encouragement, love and prayers.

She is always my biggest encourager, and I thank my Lord for such a wonderful partner for life.

Guy R. Booth

ii

Table of Contents

Page

Acknowledgments .11

Table of Contents.......

List of Figures v

List of Tables V

1. Introduction I

1.1 Background. 1

1.2 Problem Definition 3

1.3 Assumptions 3

1.4 Scope 5

1.5 Standards.

1.6 Approach/ Methodology 6

1.7 Sequence of Presentation 7

HI. Literature Review. 9

2.1 Introduction 9

2.2 Object-Oriented Design and Programming. 10

2.3 Object-Oriented Simulation 11

2.4 Parallel Object-Oriented Simulation 13

2.5 Review Summary 14

Page

III. Overview of the SEI OOD Paradigm for Flight Simulators 15

3.1 Introduction 15

3.2 A Unique OOD Paradigm 15

3.3 The Paradigm Components and Layers 16

3.4 The DC Electrical System Simulation 20

3.5 Paradigm Software Architecture 24

3.6 Overview Summary 31

IV. Analyzing the SEI OOD Paradigm for Concurrency 34

4.1 Introduction 34

4.2 Analysis 34

4.2.1 Factors that Affect Potential Speedup 34

4.2.2 Course-Grain Concurrency 37

4.2.3 Medium-Grain Concurrency 40

4.2.4 Fine-Grain Concurrency 42

4.3 Connection Dependencies 43

4.4 Analysis Summary 52

V. Design and Implementation of Parallel Extensions 53

5.1 Introduction 53

5.2 Parallel Design - High-Level 53

5.2.1 Adding Parallel Communications 53

5.2.2 Connection Gating 54

5.2.3 Connection Processing Dependencies. 59

5.3 Design Summary - High-Level 66

5.1 Parallel Design - Low-Level 67

5.4.1 Global Types and Electrical Units 67

5.4.2 Circuit Breaker, Bus and TRU Object Managers 67

iv

Page

5.4.3 DC Power System, System Aggregate, and Connections 70

5.4.4 AC Power System Aggregate, and Dummy System Aggregate. 72

5.4.5 Flight Executive 72

5.4.u flight Executive Connections 73

5.4.7 Node Simulation Program Driver. 73

5.4.8 Host Simulation Program Driver. 4

5.5 Design Summary - Low-Level. 74

5.6 Low-Level Performance Analysis. 5

5.6.1 Load Imbalance 76

5.6.2 Communications Overhead 78

5.6.3 Processing- Order Dependencies of Connections. 79

5.6.4 Mapping Heuristic 81

VI. Performance Results of the Parallel OOD Simulation. 90

6.1 Introduction 90

6.2 Validation of Results. 90

6.3 Performance Tests. 91

6.3.1 Speedup Calculations 91

6.4 Timing Test Procedures. 92

6.5 Timing Test Results 94

6.5.1 Variable T,,t Times. 96

6.6 Fixed T.,,, Speedup Measurements 105

6.7 Performance Results Summary. 0

VII. Results Analysis of the Parallel OOD Simulation 110

7.1 Introduction. 110

7.1.1 Analysis of Configuration 2v 110

7.2 Performance Analysis Summary 123

v

Page

VIII. Conclusions and Recommendations 124

8.1 Summary of Research Effort 124

8.2 Conclusions 124

8.2.1 Maximum Speedup 124

8.2.2 Impact of Variable Workload 124

8.2.3 Adding Concurrency to the SEI Paradigm 124

8.2.4 "Object-based" Paradigm 125

8.3 Summary of Contributions 125

8.3.1 Extensions for Parallel Design 125

8.3.2 Performance Analysis Technique 126

8.3.3 Performance Considerations 126

8.4 Recommendations for Further Research 127

Appendix A. Building the DESS and the PDESS 129

A.1 PDESS Build File 129

A.2 Running the PDESS Simulation 130

A.3 DESS Build File 131

A.4 Running the PDESS Simulation 132

Bibliography 133

Vita 136

vi

List of Figures

Figure Page

1. Object Diagram Example [30:12] 1

2. DC Power Circuit Diagram [29:3] 21

3. DC Power Design Specification 2:3

4. ElectricalUnits Package [29:13] 25

5. CbObjectManager Package [29:15] 27

6. Energy Flow from Object Sides [29:69]. 28

7. DCPower-System-Akggregate Package Code Fragment [29:23] 29

8. DCPowerSystem Package Body [29:125,1261 :30

9. Executive-Level Software Architecture :32

10. Voltage, LCF and Load Connections Graph 46

11. Connections Dependency Graph - Part 1 (Voltage and LCF) 47

12. Connections Dependency Graph - Part 2 (Load) 48

13. Example Object Diagram and Connection Dependency Graph 61

14. Example Object to Processor Mapping 62

15. New Executive-Level Software Architecture 68

16. Mapping of the PDESS objects for configuration 2v1 82

17. Mapping of the PDESS objects for configuration 2v2 83

18. Mapping of the PDESS objects for configuration 2v3 84

19. Mapping of the PDESS objects for configuration 2v4 85

20. Mapping of the PDESS objects for configuration 2v5 8b

21. Mapping of the PDESS objects for configuration 4v1 87

22. Mapping of the PDESS objects for configuration 4v2. 88

23. Mapping of the PDESS objects for configuration 8v1 89

24. Measured Speedups using Unmodified PDESS 95

25. Maximum Speedups using Modified PDESS 97

vii

Figure Page

26. Time per Iteration for Various Object Mappings. 100

27. Calculated Time Per Iteration for th S, quential Simulation 102

28. Calculated Time per Iteration for Parallel Simulations 10,4

'29. Time per iteration for various object mappings asing modified bus object manager

with fixed Tge 107

30. Measured speedup at 1000 iterations using the standard bus object manager and

modified bus object manager 108

31. Mapping of the PDESS objects for configuration 2v1 111

32. Configuration 2vI connection gating time-line 113

33. Configuration 2vl connection gating PERT network 116

34. Configuration 2vI connection gating PERT network for two iterations 119

VIII

List of Tables

fable Page

I New DC Power System Connection Enumerations 44

2. Six Processor Connection Processing Schedule30

3. Measured iPSC/2 Communication Times (msec/byte) 51

-. Average Floating Point ('ompltation Time (nisec) 1

5. AC Power System Object to Processor .Mappings 93

6. Dii mmy System Object to Processor Mappings.... 93

7. Calculated and Measured Execution Times for Configuration 2vl with fixed Tet. 120

S. Calculated and Measured Execution Times for Configuration 2v3 with fixed T,,,. 121

.). Calculated and Measured Execution Times for Configuration 2v4 with fixed T,,t. 12 2

10. Calculated and Measured Execution Times for Configuration 4vl with fixed 7 . 122

ix

.XFIT/(;C F/EN(T ' IiD-o0

A-bstract

1 le Software Engineering Institute ,teveloped an Object-Oriented Paradigm for Flight Sim-

,l,.-ors based on the concept of mapping the behavior of physical objects from an aircraft into an

(,)bject-friented software architecture. This mapping is a "semi-formal" method that maps objects

t(, a hieratrchv that has three togical layers: objects, systems, and executives. The paradigm was

,1dweloped with the idea of implementing the derived simulation design on a parallel or distributed

,')rpitfr architoct ure, but no explicit design features are pr, vided for implementing the design on

:W paralle! computer.

Ihis research addresses the issue of determining what extensions (if any) are required to

imple nent a parallel version of the D.C. Electrical System Simulation (DESS) that the SEI devel-

opel as an example on using their paradigm. The paraklel DESS design is implemented and tested

using Ada on an Intel iPSC/2 Hypercube. An analysis of the performance of the simulation is

pr,.,'nt,',!, and some conclusions are made about implementing a parallel design based on the SEI

Object-Oriented Paradigm for Flight Simulators

IMPLEMENTATION OF AN OBJECT-ORIENTED FLIGHT SIMULATOR

D.C. ELECTRICAL SYSTEM ON A HYPERCUBE ARCHITECTURE

I. Introduction

1.1 Background

The U S. Air Force uses flight simulators extensively to train flight crews. The systems

currently being used to implement these simulators are typically large distributed or uniprocessor

systems. These simulations are designed using performance data from an aircraft manufacturer, and

are modeled using functional decomposition. Each software component of the simulation models a

function of the aircraft such as calculating yaw, pitch and roll moments for the aircraft, or airspeed

and Mach number.

Flight simulations for crew training are real-time systems running at update rates of 15-60

Hertz. Fifteen to sixty times per second the state of the simulated aircraft must be calculated, and

all systems updated. Since the simulation software is large and complex', the software must be run

on fast super-mini or larger computer systems to get the required 15-60 Hz real-time performance. 2

For some simulations, the software is divided into large-grain tasks that can run on two or three

separate processors running in parallel. This technique is used to increase performance to meet

real-time requirements.

Concurrency between flight simulators a:nd the actual aircraft being simulated can be dif-

ficult to maintain because changes in aircraft systems, such as the addition of new equipment,

are not easily added into a functionally-designed simulator. Changes to one functional module in

'The size and complexity are due to the dynamic system models used for aircraft -%nd the large number of state
variables maintained in the simulation.

2These update rates are based on those seen in systems such as the F-16, F-15 and A-10 simulations used for
training systerrm research at AL/HRA, Williams AFB, Arizona.

the simulation typically require other unexpected changes in other functional modules because of

the coupling of functional components in the simulation, aud ch:.:ges may be required in several

separate packages to incorporate the new system.

Object-oriented design (OOD) and programming (OOP) can aid in solving many concurrency

and implementation problems of flight simulators because object-oriented designs isolate changes

to a single object or group of objects. Functional designs can isolate changes to a single functional

module if the module is loosely coupled with other modules, but object-oriented design and imple-

mentation appear to be better suited to building loosely coupled systems in which data and the

methods that operate on that data are grouped together as an object. Since object-oriented design

and implementation employ information hiding and encapsulation, changes to a single object do

not usually require changes to other components throughout the system [8, 7]. Modifications are

limited to specific objects, and few, if any, modifications are required in other objects within the

system.

OOD provides the capability to deal with very complex software systems in a consistent

manner that models real objects more directly than functional, or data-oriented designs can [8, 7].

This is ancth, r reason that OOD is being used in developing simulations [24, 22].

The Software Engineering Institute, a federally funded software consortium at Carnegie Mel-

lon University, has developed a paradigm to map "real" objects from an aircraft into OOD and

OOP objects for an object-oriented flight simulation [30, 29]. The paradigm is well defined and its

authors have used the paradigm to implement a uniprocessor simulation of a direct-current elec-

crical system for a flight simulator [29]. The SEI OOD Paradigm is the result of work done in the

Ada Simulator Validation Program (ASVP), a research and development effort by two aerospace

contractors to redesign and implement subsets of two existing flight simulators in Ada. The SEI

OOD Paradigm and the software architecture developed by the SEI have received acceptance and

are being used by contractors involved in full-scale simulation developments [30].

2

"One of the design goals of the paradigm was to facilitate spreading the work load over

multiple processors" [30:45]. Some ideas for doing this are presented in the paradigm report;

however, the developers have not implemented or tested any of the presented ideas [30:45]. The

paradigm does not present any heuristics or methods for dealing with the parallel programming

problems of non-determinism, load-balancing, and communications overhead. These are important

factors that must be considered in mapping any software design to a parallel computer architecture

[10, 19, 1]

The simulation objects developed using the SEI OOD Paradigm display the same concurrency

seen in the real aircraft, i.e., the engine components run in parallel with the electrical system

components, which run in parallel with the avionics components, etc.. Also, components (objects)

within a single system appear to have some parallelism. The parallelism within a single system is

a smaller grain parallelism than the system level parallelism, but may afford an additional increase

in performance of a parallel implementation of the simulation.

If a method can be derived for implementing the SEI OOD Paradigm on a parallel architecture,

then the task of implementing any new SEI OOD designs on parallel architectures can be simplified,

and development time and cost for U.S. Air Force flight crew simulators can be reduced.

1.2 Problem Definition

Can the SEI OOD Paradigm be extended to provide a method of implementing a flight

simulator on a distributed memory parallel computer architecture?

1.3 Assumptions

1. The SEI OOD Direct-Current Electrical System Simulation is a "correct" implementation

(i.e., it accurately simulates the model on which the electrical system design is based), and it

is a good example of a typical design derived using the SEI OOD Paradigm. This assumption

3

is based on the SEI's choice to use this simulation to demonstrate the application of their

design paradigm. Thus, it is a good baseline to use for research on developing a parallel

implementation of a flight simulator that is based on the SEI OOD Paradigm.

2. The SEI simulation is deterministic; given the same inputs, it always generates the same

results. If the sequential simulation is deterministic, then the output of the parallel imple-

mentation can be compared against the sequential implementation to validate the parallel

simulation. If the sequential simulation is not deterministic, then validating the correct im-

plementation of the parallel version of the simulation may not be possible.

3. rhe SEI simulation has objects that exhibit large or medium-grain concurrent behavior. 3 If

the objects in the simulation do not exhibit large-grain or medium-grain concurrent behavior,

then fine-grain parallelism will be the only type of parallelism possible. However, it has been

shown that the iPSC/2 Hypercube architecture is not well-suited for implementing fine-grain

parallelism due to the high ratio of communication time to computational time [28:63. Thus,

attempting to implement a fine-grain parallel design of the SEI simulation may not result in

any speedup of the simulation; it could run much slower than the sequential version due to

communications overhead.

4. The SEI OOD simulation can be implemented and run in the memory space available on

the iPSC/2 Hypercube. Currently, each node of AFIT's Intel iPSC/2 Hypercube has twelve

megabytes of memory. If the simulation requires a larger system than the AFIT iPSC/2

Hypercube, then another hypercube system will need to be found that has more memory, or

the simulation implementation will need to be optimized for minimal memory usage.

5. All the simulation objects are persistent [8], i.e. all objects are created during the initialization

of the simulator, and no objects are deleted or removed during the simulation. This is

3 Large-grain concurrency is parallelism at the outer level of program control, small-grain concurrency is parallelism
at the instruction or logical operation level, and medium-grain parallelism is between these extremes [14:8].

4

consistent with the objects being simulated: the electrical components in the real aircraft are

not deleted or destroyed. They are persistent objects.

6. All object communication paths are known during the initialization phase of the simulation,

and communication connections between objects are static. This is a result of the persistence

of the objects noted above, and the physical connections of the components in an aircraft.

7. All objects in the simulation have the same basic behavior: they receive input messages

from other objects, they calculate a new state based on these inputs, and their new state

information is sent as an output to other objects. This is the basic object behavior that is

used to build a model of the parallel objects of the simulation.

8. Dynamic task scheduling for objects is not required. All objects are allocated to processors

at initialization time, and the objects are not moved between processors, but messages are.

The issues of optimal task scheduling and dynamic load balancing are not a major point of

investigation in this research. This should not be a limiting factor on the research value of this

thesis because little work has been done on object-oriented, parallel, time-driven simulations

(see Chapter II); and the topics of dynamic scheduling of objects and tasks is an area of

research being investigated by other researchers. 4

1.4 Scope

This research effort addresses how to implement a simulator designed using the SEI OOD

Paradigm on a distributed, parallel, multiple instruction, multiple data (MIMD) computer.

The SEI OOD Direct-Current Electrical System Simulation is used as the basis to derive a

parallel design that is implemented in Ada on the AFIT Intel iPSC/2 Hypercube parallel computer

system.
5

4 Other AFIT students addressing this issue: JoAnn Sartor [40] and Andrew McNear [33].
5 Ada is used as the implementation language since the SEI DC Electrical System source code is in Ada and an

object-based language such as Ada will aid in implementing a parallel version of the SEI's simulation.

5

1.5 Standards

Speedup of a parallel program is typically measured by comparing the performance of the

best sequential algorithm against the performance of the parallel algorithm [19, 1]. To measure

the speedup of the parallel OOD simulation, a comparison of the execution time of the parallel,

object-oriented simulation versus the sequential SEI simulation execution time is done.

The simulation executes a single iteration by sequencing through a series of operations that

pass state information between the objects in the simulation. The number of simulation iterations

is varied and the execution time of both simulators measured. The results are presented graphically

and tabularly to show the performance of the parallel simulation.

1.6 Approach/Methodology

The parallel simulation is developed by first analyzing the SEI OOD simulation software,

and determining the concurrency in the design. Since a key benefit of the SEI OOD Paradigm is

the well-defined software architecture, the overall software architecture of the original simulation is

maintained in the parallel simulation with extensions added to provide the necessary mechanisms

for parallel execution. A large part of the original SEI simulation software is reused in the parallel

version.

The parallel extensions are designed after the concurrency analysis is completed. The new

design is implemented on the iPSC/2 using Verdix Ada. Changes are made to the various packages

of the simulation, and each change tested prior to making the next change. This is done to control

the number of errors generated due to new code, and to make sure the changes implement the

desired behavior.

Once all the modifications to the simulation are complete, the simulation is tested to validate

that it has a deterministic performance, and the results of this testing are compared with the

sequential simulation running on the iPSC/2 host processor. This provides some level of confidence

6

that the simulations behave the same for the same inputs. No attempt is made to do a formal

logical proof (verification) th it the simulations are identical; that is beyond the scope of this thesis

effort.

Next, a series of tests is run to compare the execution times of the parallel simulation against

those of the sequential simulation to measure the speedup (or slowdown) of the parallel simulation.

Various configurations of object-to-processor mappings are tested to determine the effect on speedup

for various configurations. The execution times were measured on one, two, four and eight nodes

since a hypercube architecture requires that processors be allocated in powers of two, i.e., the

number of processors is 2d where d is the dimension of the hypercube. The AFIT iPSC/2 has a

maximum dimension of 3 as it is currently configured.

The original SET simulation is modified to run on a single node of the iPSC/2 Hypercube,

and then the performance of the sequential version is measured. The sequential version is tested

on a single node, instead of the host, since the host processor is a multi-user system with a large

UNIX-based operating system. Each node is a dedicated, single-user processor that does not have

the high operating system overhead seen on the host node.

Last, an analysis of the results of the timing measurements is presented, a performance

estimation model is described, and some conclusions based on the performance estimation model

are presented.

1. 7 Sequence of Presentation

Chapter II of this thesis is a literature review of object-oriented design and programming,

object-oriented simulation (OOS), and parallel OOS. Chapter III is a description of the SET OOD

Paradigm and the DC Electrical System Simulation. Chapter IV is an analysis of the SET OOD

Paradigm and a description of what extensions were added to the SET Paradigm to implement a

parallel simulation on a distributed computer architecture. Chapter V presents the implementation

of the parallel simulation. Chapter VI documents the testing results, and Chapter VII is an analysis

of the testing results. Chapter VIII contains conclusions about this research effort and makes some

recommendations for future research.

8

H. Literature Review

2. 1 Introduction

This chapter describes the current state-of-the-art in object-oriented simulation (OOS) and

how OOS is being implemented on parallel computer systems.

In 1989, the Department of Defense identified modeling and simulation as one of the twenty-

two critical technologies in the United States[16:A-55]. Antonio Guasch, 1990 editor of Proceedings

of the Society for Computer Simulation Multiconference on Object Oriented Simulation, states that

Object-oriented methodologies and programming languages are becoming increas-
ingly important in software engineering in general, and in simulation in particular.
Object-oriented design has assumed in the last few years an important role in such sim-
ulation areas as discrete-event simulation, distributed simulation, graphical interfaces
for simulation and knowledge simulation. Object-oriented design is a natural approach
to modeling and studying a world comprised of objects. It is our belief that the ideas
behind this methodology will ultimately spread into most of the simulation community.
Practical aspects have limited the widespread use of object-oriented simulation-based
systems. However, new object-oriented programming implementations that reduce the
amount of computer resources needed to support them will help to overcome some of
the present limitations [22:11.

Parallel computer architectures (hardware and software) were also identified by DoD as a

critical technology [16:A-33]. Simulations are computationally intensive, and recent development

of cost effective parallel computers provides the opportunity to broaden dramatically the range

of problems that can be simulated (38]. Parallel object-oriented simulations' provide a means to

implement complex simulations that can be executed in an acceptable amount of time [2, 6, 27].

This review is a summary of the professional literature of published sources from 1987 to date

on the subject of parallel object-oriented simulation. The information presented was gathered from

a search of the Defense Technical Information Center, Compendex Plus, and Dialog Aerospace

databases at the Air Force Institute of Technology Academic Library. The scope of the review

Also referred to as distributed OOS in the literature.

9

is limited to parallel object-oriented simulations that are not knowledge based, and it does not

address simulation using artificial intelligence (AI) languages such as object-oriented Common Lisp

or DEVS-Scherne.

The review starts with a short background of object-oriented design (OOD) and object-

oriented programming (OOP) and introduces the key terms and concepts used in the rest of the

review. Following this review of OOD and OOP, object-oriented simulation, and then parallel

object-oriented simulation are reviewed. Lastly, some conclusions are presented based on the current

development of object-oriented simulation and parallel simulation.

2.2 Object-Oriented Design and Programming

Object-oriented design is a methodology that has been popular in the computer simulation and

artificial intelligence communities for some time. Since more efficient object-oriented programming

and support environments are becoming available, OOD and OOP are gaining wide acceptance

in the general software community because they aid in developing modular and reusable software

[6:1-2].

Object-oriented design is the method that leads to an object-oriented decomposition and

provides the capability to deal with very complex software systems [8:1-23]. In this method of

design, data and its associated functions are encapsulated in self-contained units called objects.

Each object has attributes that describe its state, and the object provides services or methods that

allow its state to be determined or changed. Each object is part of a class of objects that have

similar attributes and services. These objects communicate with each other by passing messages,

and each object exhibits behavior in response to the messages it receives. [6, 7, 32].

Object-oriented programming is used to implement an object-oriented design. Using an

object-based or object-oriented language such as C++, Smalltalk, Object Pascal or Ada, a pro-

grammer can implement an object-oriented design in a straight-forward manner [8, 32]. An object-

10

oriented programming language is not required to implement an object-oriented design, but the

implementation is much easier for the programmer when an OOP language is used (13].

Charles Herring from the U.S. Army Construction Engineering Research Laboratory states

that, "Object-oriented programming is replacing structured programming as the dominant software

paradigm. This movement will have a great impact on the design and production of simulations"

[24:59].

2.3 Object-Oriented Simulation

Lomow and Baezner [32] describe how object-oriented simulation builds on the principle that

a system design is based on objects. The objects are representations ot he elements that compose

the system. Some objects in an OOS execute independently and concurrently with other objects.

These are called entities, and they model the physical processes of the simulated system. Events

cause a change in the state of an object in the simulated system. Entities schedule events for

each other and either synchronize the actions of two or more entities or pass information between

entities. All the actions of entities and the scheduling of all events are tied to a logical clock called

the simulation clock. Each event is tied to the logical simulation clock by means of a scheduled

event time, and the event time corresponds to the actual time in the physical system when the

corresponding physical event occurs [32].

Languages such as ModSim [24], Sim++ [2] and Ada [29] are being used to implement object-

oriented simulations. ModSim and Sim++ are supersets of the Modula-2 and C++ languages,

respectively, and are designed specifically to support object-oriented simulation [24, 2]. Ada is

a general purpose object-based programming language [13, 8, 7] developed initially to support

complex embedded systems programming [12]. Since Ada is the approved High Order Programming

Language for DoD, it is being used to implement various simulation systems. The Ada language

contains some support for object-oriented programming but has some notable deficiencies [13]. Ada

11

does not incorporate the object-oriented design concepts of inheritance and dynamic binding. To

support object-oriented simulation using Ada, Corbin and Butler [13] have developed a toolkit

to provide the facilities to create and manipulate objects and to provide support for other useful

features using Ada in simulation. Using their toolkit, no extensions to Ada are necessary to

implement an OOS, and all programming is done using the standard Ada language.

Members of the technical staff at the Software Engineering Institute, a federally funded soft-

ware consortium, have developed an object-oriented paradigm for building flight simulators using

Ada [30], and they have developed an electrical system simulation for a flight simulator using the

paradigm [29]. The paradigm provides a structured method to map "'real" physical objects from an

aircraft to software objects in a flight simulator, and their paradigm does not require any extensions

to Ada to implement the simulation on a uniprocessor system. A full description of the SEI OOD

Paradigm and the DC Electrical System Simulation is presented in Chapter III.

Robert Doyle at the Rockwell International Science Center has implemented a communica-

tions simulation using several OOP languages (Smalltalk, Objective-C, C++, and Turbo Pascal

with Objects) and non-OOP languages (C, Common Lisp, Simscript 11.5), and he has measured

the simulation performance for each language. [17]. He found that the non-OOP simulation using

C was the fastest simulation (60 CPU seconds for a simulated time of 10 units). However, he found

that the object-oriented C++ implementation ran in nearly the same time (62 CPU seconds for 10

units). He also found that all the languages tested yielded acceptable performance. His conclusion

was, "Object-oriented techniques may be successfully applied to simulation with little if any per-

formance penalty. However, some care must be taken in selecting the implementation vehicle (or

programming language)" [171.

12

2._ Parallel Object-Oriented Simulation

Parallel computer architectures can be classified as either loosely coupled . tightly coupled

[H]. Loosely coupled systems have their memory distributed among each processor as local mem-

ory. If all processors share a common global memory, then the system is a tightly coupled system.

Currently shared memory, tightly coupled architectures are limited to systems of only a few hur'-

dred processors. but distributed memory, loosely coupled systems are available with thousands of

processors [1-1, 1(3].

Complex object-oriented simulations require several objects, and large numbers of objects

require a large amount of processing and memory resources: parallel computer architectures can

provide the resources needed to support complex object-oriented simulations [3]. William L. Bain

and Shala Arshi have shown that a complex, object-oriented simulation model can be implemented

to run efficiently on an iPSC/2 Hypercube [4]. Bain and Arshi used the Interwork II concurrent

programming toolkit to implement an object-oriented, discrete-event simulation of a parallel com-

puter system on the iPSC/2 Hypercube, a distributed memory, multiple instruction, multiple data

(MIMD) computer system.

Using a distributed parallel architecture to implement a simulation will usually result in a

speedup when compared to the time that the same simulation requires on a uniprocessor system

[20, 23, 351. Hartrum and Donlan have shown a speedup by using distributed simulation for a

battle-management simulation of a ballistic missile defense system [23], and Nicol was able to

achieve a speedup for another battle simulation [35]. Fujimoto conducted a series of tests on the

speedup achieved by several different distributed discrete-event simulations [20]. In comparisons

with uniprocessor-based event simulations, he showed that significant speedups can be achieved for

most simulation workloads. However, he did find that some parallel simulations ran slower than

the equivalent uniprocessor simulation.

13

Research in parallel simulation has primarily focused on discrete-event simulation. The two

primary methous of discrete-event siMulation discussed in the literature are the Time-\Varp op-

timistic approach [32, 5 4-1, 21, 31. 351 and the Chandv-Misra conservative approach [9, 34. 39,

20, :36, .131. Parallel, time-driven simulation has not received as much attention in the literature

[.5, 37. 11, 2:31. No published sources were foun,, on object-oriented, parallel, time-driven simuaa-

2..5 Rezeu' Stirn uary

Object-Oriented design and programming are becoming more important in the software en-

gineering community because OOD and GOP provide a method to model accurately the world as

people see it - a world of objects [22, 24, 8].

The SEI OOD Paradigm was developed to aid in mapping "'real" objects into COD and GOP

objects for object-oriented flight simulations [30, 29]. The paradigm is well defined and has beer

used t-, .odel real systems of objects on uniprocessor systems; however, the paradigm has not been

shown to ,vork for parailel object-oriented designs.

It has been shown that distributed memory parallel systems can be used to implement complex

object-oriented simulations [3. 4]. Usually the simulation will execute faster on the parallel system,

but not always [2u].

This research effort will investigate whether the SEI GOD Paradigm can be extended to de-

velop a parallel, time-driven, object-oriented simulation that executes in less time than the equiva-

lent uniprocessor simulation. The SET's DC Electrical System Simulation (DESS) will be used as an

example to evaluate what extensions are required to the SEI OOD Paradigm to implement such a

simulation. If the paradigm can be extended and implemented effectively, then a structured method

of implementing a parallel, time-driven, object-oriented, aircraft simulator can be developed based

on the extended SEI GOD Paradigm.

14

I1. Overriew of the SEI OOD Paradigm for Flight Simulators

3.1 Introduction

The 1988 SE[report, An OOD Paradigm for Flight Simulators, 2nd Edition, describes the

design of a reusable architecture for the flight simulator software domain [301. In the report, a

design for an engine system is presented to illustrate application of the design paradigm, and the

engine system software is developed to the Ada package specification level. 1 The bodies of the

engine system objects are not developed in the report. 2

The 1989 report, An Object-Oriented Solution Example: A Flight Simulator Electrical System,

demonstrates the ap,-lication of the paradigm to derive a design for a DC electrical system of a

flight simulator [291. The Ada package specifications and bodies for the DC system are developed

in this report along with a test driver for the simulation. In the following paragraphs an overview

of the SEI paradigm is presented to provide a basic familiarity with the key concepts of the SEI

Paradigm. The description is extracted from [30] and [29], and the reader should refer to these

reports for a detailed description of the paradigm. Spicer's thezis, [41], describes the paradigm

from a software reusability viewpoint.

3.2 A Unique OOD Paradigm

The SEI OOD Paradigm was designed with two basic goals: to eliminate nested implemen-

tations of objects3 and to simp.,y dependencies among objects [30]. The paradigm is a model for

implementing systems of objects to meet these goals. In his thesis, Mapping an Object-Oriented

Requirements Analysis to a Design Architecture that Supports Design and Component Reuse, Spicer

'Ada specifications define the object types and procedures that are visible to other packages. Ada package
specifications can be compiled but not linked without package bodies.

2 Package bodies are required to implement executable Ada programs.
3 Nesting of objects occurs when objects are decomposed into groups of other objects. These objects are decom-

posed into still other objects, etc..

15

notes the following characteristics of the SEI OOD software architecture that make it unique when

compared to other OOD architectures.

1. The architecture consists of logical layers replacing the usually nested objects found
in a composition hierarchy. Though the control flow follows the hierarchy, data
generally flows across the hierarchy, that is, data may pass directly between dif-
ferent major software units without going up and down the hierarchy.

2. Templates are used for instantiating the architecture for new applications within
the flight-simulator domain.

3. Connectors are used to connect objects. This reduces coupling and renders the
objects themselves more reusable since there are no direct dependencies (Ada
"'with"ing) between objects [41:2-9].

3.3 The Paradigm Components and Layers

The paradigm defines an architecture with three logical layers: the object, the system, and

the executive layers [41:3-5]. The following are excerpts from [30] and [29] that describe the logical

layers and the components within the layers.

The fundamental units of the paradigm are objects and connections. Objects map to
real-world entities. An object is implemented as a math model that maps the environ-
mental effects (inputs) on the object to the object's outputs, given the attributes of the
object and its operational state. The implementation isolates individual effects. Also,
an object is not aware of its connections to other objects.

A connectzon is the mechanism for transferring state information between objects.
Processing a connection involves reading the state of some objects on the connection
and broadcasting to others [30:11].

Connections are procedures which read the state of one object and write that state
to another object...

Connections are classified as either executive or system level connections. Executive
level connections are those between systems ... System level connections are those be-
tween objects within a system.

System level connections read state information from an object in the system and
write the information to another object in the system. The connections are owned by
the system. When the system is called to update itself, all the system level connections
are gated (or processed); when complete, the system is considered updated.

16

Executive level connections read state information from an object in one system and
write the information to an object in another system. ... When the DC Power System
is updated, the flight executive connections to the system are gated, then the system is
called to update itself [29:8].

The system level is defined by the objects within a system and the connections between the

system objects (intra-system or system-level connections).

Above the layer of objects and systems is the executive layer. "An executive controls the

update of a set of systems compiled together running on a single processor. The paradigm assumes

that there will be more than one set of systems and that multiprocessing will be involved" [30:11].

Thus, the paradigm implies that parallelization is to be implemented at the system level, which

is a course-grain level of parallelization. (For this research, medium-grain parallelization within a

system is investigated. See Chapter IV for more details on the levels of parallelization.).

Communication between executives is handled by an abstraction called a buffer. A
buffer is some means of sharing data among separately compiled software. The paradigm
makes no assumptions about how the operating system transfers data or how executives
on separate processors are invoked.

At all levels, updates are accomplished by gating (or processing) the appropriate
connections. The levels discussed in the paradigm are system and executive. A system
is an aggregation of objects and the connections among those objects. An executive
is a set of systems and all connections that cross system boundaries, i.e., connections
between objects in different systems. Figure 1 shows views of an executive, two systems,
and several objects and connections [30:11,12].

Each object class is represented by a single object manager, and access to each object is

handled through the methods defined by each object manager.

The object manager defines the operational state of the object. The operational state
refers to those characteristics which may change with time, e.g., the degree of charging
or discharging of a battery, the setting of a switch, malfunctions, or aging effects on
various components.

The object manager allows the object's environmental effects to be placed on the
object. The environmental effects are external object states which are required by the

17

Executive-level

Exciei:System System 2. n oncin n

Eeuei:System , is:te ObetZ.3 and connection s n

Figure 1. Object Diagram Example [30:12]

18

object to determine its state.

The object manager implements the math model for the object. The math model
is impkmentatior dpeiident. i'he ubJcct nallager. ube the math models to map the
object's inputs to its outputs. The object manager produces the outputs available from
the object. The outputs are generated by the math model, using the environmental
effects placed on the object and any additional constraints imposed by the attributes
and the operational state of the object. The math model may be invoked when the en-
vironmental effects are placed on the object or when outputs are read from the object.
This is an implementation level decision left to the system designer; it is not defined by
the paradigm.

The actual instances of the objects are stored in system aggregates. An aggregate
allows named access to the objects in a system; no procedure call is required to retrieve
the object. The aggregate is not denoted on design specifications, but is an essential
part of the implementation of a system and its objects [29:9].

The SEI paradigm defines abstractions that can be used to implement an object-oriented

simulation in a consistent manner. The object managers define classes of objects, and provide the

methods that can be applied to the objects of that class. Interaction of objects is accomplished by

gating the executive and system-level connections between objects. The paradigm does not stipulate

that a connection must have a single source or destination. Also, it does not stipulate that the flow

of information through a connection must be only in one direction, i.e., state information may be

transferred bi-directionally through a connection.

Objects defined by the SEI paradigm are not active objects or agents; objects do not request

services directly from other objects. Connections are the active agents of the simulation. When

a connection is gated (or processed), the connection requests services of the object it reads and

the object it writes. Thus, the gating of connections is the active part of the simulation. By

gating more than one connection at a time in a system, some degree of parallel execution may be

achieved in the simulation. However, dependencies in the processing order of connections may limit

the potential parallelism. (Chapter IV describes how this parallelism can be used to implement a

scalable parallel simulation using the SEI paradigm.)

Aggregates provide an abstraction for systems in the SEI paradigm. The system aggregates

provide a single soft.bare unit that contains the instances of the objects in a system. A system

19

aggregate maintains pointers to several classes of objects that define a system. This simplifies

building of systems from objects and provides a single point of access to a system's objects. The

c .'-pt -,f tho -".' tem aggregate providing named acress to all the objects within a bystem i1

different from the typical method used in object-oriented designs. Typically, the object managers

would maintain a list of pointers to the objects of the class defined by the object manager. Then,

access to an object would be done through its object manager. In the SEI's paradigm, the object

managers are relieved of the task of tracking the object instances. The object managers simply

provide the methods for the type of objects they export.

In the following section the SEI DC Electrical System Simulation (DESS) is presented as

an example of how the SEI OOD Paradigm can be used to implement a system within a flight

simulator. The section is a summary of the information contained in [29]. Please refer to [29] for a

full description of the DESS.

3.4 The DC Electrical System Simulation

Figure 2 is a schematic diagram of a DC electrical system that might be seen in a typical

aircraft [29:2]. AC power is provided to the transformer rectifier units (TRUs) that convert the

AC voltage to a DC voltage. The TRUs are the source of current and voltage for the DC Power

System, and they have a load conversion factor (LCF) that represents how effectively the TRUs

convert AC to DC power. DC buses carry the voltage and current from the TRUs to the load

devices. The buses follow Kirchoff's current and voltage laws in the simulation. Circuit breakers

(CBs) connect various components together, and can be switched off (or open-circuit) by using the

set-position method provided by the circuit breaker object manager. For the simulation the CBs

are considered to have no loss across them.

The DESS objects are of three classes: buses, TRUs and CBs. Each of these classes of objects

is implemented with a separate object manager that defines the proper types and methods for these

20

ACBus21 B11- 2 CBIj D-u

AC Buss-2

TRU.4 D-Mi-
C-.

AC Bus- B21D-u3

ACNai- BB _5

TR11 _________

AC

BusBs6

CBTh_214

DC-BusjO

Figure2 CPwrCrutDarm[93

TRU21

objects. The objects for the design specification are derived by mapping the real-world entities

from the circuit diagram shown in Figure 2 to objects as shown in Figure 3.

Figure 3 shows the Dummy System added as an external load to the DC Power System.

The Dummy System is composed of CBs instantiated in the Dummy System Aggregate. The AC

power is provided by buses in the AC Power System. Six AC buses are connected to the DC Power

System's six TRUs, and the six AC buses are instantiated in the AC Power System Aggregate.

The paradigm defines the structural model of the simulation in terms of a graphical design

specification such as the one shown in Figure 3 for the DC Power System. The structural model

consists of symbols and rules where each symbol has a software template associated with it [29:11].

Thus, the paradigm provides a structured method of mapping real-world entities into objects

created using software templates, and the diagram shown in Figure 3 represents a specification of

the simulator's DC Power System design. The design specification diagram shows three systems

that define the operational environment of the DC Power System. The AC Power System provides

voltage and current to the DC Power System, and the Dummy System represents the load on the

DC Power System [29:6].

The DC Power System design specification follows the convention that:

" A bus object is between every other pair of connected objects.

" Only two connection points are on each connection; one on a bus object and the other on

another object [29:6].

The solution (or simulation design) models the flow of information directionally.
Voltage and LCF flow from voltage sources, such as the generators and batteries,
through passive objects (such as circuit-breakers) to voltage sinks, such as motors and
lights. Load flows from the voltage sinks back to the voltage sources. Because of this
directionality, objects, such as circuit breakers and TRUs, are defined with two sides.
Each side contains the information flowing through the circuit to that point. The
transfer of information through an object means: obtain the stored information from
the opposite side of the object. This convention maintains the proper flow through the

22

V, r V, V, V, V,

I ~ ~ ~ ~ D IL_ !aLLI t_

VVV, V, V,

V. v, V .v vv,

AC Bu, C R C ~ nLFC LCF C_ vF Dumm

1 2'p 1 2 . 1Sse
V, V, V, V,

LCL(C Ii !
DC 2.1e 3.21stem(

Figur Bus D3 Powe Desig S ciato

1 3 1 3 3.

system. Bus objects, which may be connected to any number of other objects, have as
many sides as they do connection points [29:6].

In Figure 3 connections are represented by double-headed arrows. The typical convention for

design specification diagrams as shown in Figure 3 is that information is read from the object at

the tail of the arrow and written to the object at the head of the arrow [29:8]. However, Figure 3

uses double-hea -d arrows for notational simplicity. Voltage, V, and LCF data flow from left to

right in the figure, and current, I, flows from right to left in the figure. For example, voltage, V.

and LCF are read from the AC Power System bus objects and written to the TRUs in the DC

Power System. Current, I, is read from each TRU and written to the AC Power System buses.

The connections such as those from ACBus_1 to TRUA in Figure 3 and from DC_1 to

the Dummy System are all executive-level connections. These connections are processed by the

executive prior to processing the system connections within the DC Power System. The connections

enclosed in the DC Power System roundangle 4 are all system-level connections for the DC Power

System.

3.5 Paradiqm Software Architecture

The paradigm uses a unique software architecture to implement a simulation design specifi-

cation constructed from the abstractions of objects, connections, systems and executives. In the

following paragraphs, we will use the DESS software from [29] to describe the software architecture

derived from the design specification shown in Figure 3. Refer to [29] for a listing of the SEI source

code for the DC Electrical System Simulation as implemented from the design specification using

the paradigm's software architecture.

A goal of the SEI paradigm is to simplify dependencies between objects [30:8]. The objects

created using the paradigm are implemented so they are only dependent on global types [29:12].

4 A rectangle with rounded corners

24

package Electrical-Units is

type Voltage is (Floating_Voltage, ZeroVoltage, Available-Voltage);

No-Voltage : constant Voltage := Zero_Voltage;

-- Devices like relays need to know if
-- voltage is available without concern for the level.

Energizing-Voltage : constant Voltage := Available-Voltage;

type Current is new Float;

No-Current : constant Current := 0.0;

type LoadConversionFactor is new Float;
NoLoadConversion : constant LoadConversionFactor := 0.0;

-- Needed when device shorts out when current passes the wrong way.

MaxLoadConversion : constant LoadConversionFactor := 10000.0;

-- Permits a function to return all three values.

type Power-Info is

record

V : Voltage : Floating-Voltage;

I : Current := No-Current;
Lcf : LoadConversionFactor := NoLoadConversion;

end record;

end Electrical-Units;

Figure 4. ElectricalUnits Package [29:13]

The global types package for the DC Power System is called ElectricalUnits. The package

provides the definition for voltage, current, and LCF types. Voltage is an enumerated type; but

current and LCF are floating point values. The Power-Info record contains components for voltage,

LCF and current. Figure 4 is a copy of the Electrical-Units package.

Each object type has an object manager associated with it. Each object manager provides

the methods for manipulating its object type, and each object manager has a similar structure.

Each object manager for the DESS provides the following methods:

25

" New_{object}. Returns a new instance of type object.

" Give-VoltageLcf-To. Gives voltage and LCF to one side of an object.

" GiveCurrentTo. Gives current to one side of an object.

" GivePowerInfo-To. Gives power info to one side of an object.

" Get.Power.Info-From. Gets power info from one side of an object.

The circuit breaker object manager also provides a method to get the position of a circuit

breaker object (open, or closed), and a method to change the position. Figure 5 shows the Ada

specifications of the circuit breaker object manager.

Every electrical system object has the attribute Side..Names. "In order to simulate energy

flow in a system, the sides of an object hold the flow through the system to that point" [29:69],

i.e., each side of an object holds state information that represents the energy flow to that point.

Energy flow in the DESS is simulated by transferring state information from the side of one object

to the side of another object. By gating a connection between two objects, the state information

from the side of one object is transferred to the side of another object.

A typical object from the DESS is shown in Figure 6. "The voltage flow through the system

to the object is stored at side X. The load flow through the system to the object is stored at side

Y" [29:69]. When gating a voltage connection that has side Y as the source of the connection, the

object operation Get _Poer.Info.-From (a-side => Y) is applied to the Y side of the object shown

in Figure 6. Applying this operation to the Y side of the object causes the voltage information on

side X to "flow" through the object. When the voltage flows through the object, the voltage state

data is transformed by operations within the object that model the behavior of the type of object

being simulated, e.g., a TRU object will convert the voltage on side X from an AC voltage to a DC

voltage.

26

with Electrical-Units;

package CbObject-Manager is

package EU renames Electrical-Units;

type Cb is private;
type CbPosition is (Open, Closed);

type CbRating is new Float;

type CbSideNames is (Side_1, Side_2);

function NewCb (Position : in CbPosition;

Rating : in CbRating) return Cb;

procedure Give-VoltageLcfTo (

A_Cb : in Cb;

ACbSide : in CbSideNames;
Volts : in EU.Voltage;

Load-Conversion : in EU.LoadConversionFactor);

procedure GiveCurrento (
A_Cb : in Cb;

A-CbSide : in CbSideNames;
Load in EU.Current);

procedure GivePowerInfoTo
A_Cb in Cb;

ACbSide : in CbSideNames;

ExternalPowerInfo : in EU.PoverInfo);

function GetPowerInfoFrom (
A_Cb : in Cb;

A-CbSide : in CbSideNames)

return EU.PowerInf o;

procedure GivePositionTo (
ACb : in Cb;

Position in CbPosition);

function GetPositionFrom (ACb in Cb) return CbPosition;

private
type CbRepresentation; -- incomplete type, defined in package body
type Cb is access CbRepresentation;-- pointer to a Cb representation

end CbObj ect_.anager;

Figure 5. CbObjectManager Package [29:15]

27

An Object

Voltage Voltage

X Y

[.,ad Side Side Load

Figure 6. Energy Flow from Object Sides [29:69]

Tile calculations required to implement the flow of energy through an object can be done when

state information is applied to the side of an object or when the state information is read from the

side of an object using a method such as the Get.PowerInf oFrom method described above. The

paradigm does not specify when these calculations are to be done, but for the DESS implementation,

the state is updated when power information is read from an object as was described above using

the GetPowerInfoFrom method [29:16].

As mentioned previously, each system is represented by a system aggregate. The system

aggregate names each object and the names are used to reference an array of pointers to the

system's objects [29:23]. Tbis provides named access to any object in a system through the system

aggregate. Figure 7 is a fragment from the DC Power System Aggregate package showing how the

objects are named and instantiated in a constant array indexed by object name.

The DC Power System connections are defined in a data structure as shown in the code

fragment in Figure 8. As noted before, each connection has only two connection points. These

connection points are implemented as an array of size two with each element in the array declared

as an element point defined in the DC Power System Aggregate package.

The DC Power System package defines procedures to process all of its internal or system-level

connections. For voltage and LCF, connections are processed by reading point 1 of a conhi ction

and writing to point 2 of a connection in order from Connection_7 to ConnectionA2. Thus, all

connections are processed for voltage and LCF such that voltage flows from left to right (source

28

package DcPowerSystemAggregate is

type CbNames is (

-- CrB's between TRUs and tie-bus-1

Cb-l-1,

Cb_2_1,
Cb_3_1,

-- define a table in which the objects are instantiated and

can be referenced by the name.

NamedCbs : constant array (CbNames) of CbObjectManager.Cb

Cb-11 => CbObjectManager.NewCb
(Position => CbObjectManager.Closed, Rating => 50.0),

Cb_2_1 => CbObjectManager.NewCb
(Position => CbObjectManager.Closed, Rating => 50.0),

Cb_3_1 => CbObjectManager.gewCb
(Position => CbObjectManager.Closed, Rating => 50.0),

Figure 7. DCPowerSystemAggregate Package Code Fragment [29:231

to sink) in Figure 3. For load, connections are processed in reverse order (from Connection_42

to Connection_7). Because tie buses have voltage and current flowing in both directions, the

connections to tie buses are processed more often than other connections [29:24,25].

Figure 9 depicts the overall software architecture of a typical aircraft simulator. The architec-

ture diagram is displayed in the notation presented by Grady Booch in [7]. The diagram depicts that

the Flight Execut iveConnections, Engine-System, DCPowerSystem and the ACPower-System

packages are all "with"-ed by the body of the Flight-Executive package, the FlightExecutive-Connections

body withs the DCPower_-SystemAggregate, the CB-Object_-Manager packages, etc..

"Each system is represented by a package called {system.rame} System. The specifica-

tion of each system package exports a single procedure, Update_{system-name}_System, which

is called by the flight executive to update the system" [29:30]. Thus, the state of the DC Power

System is updated by a call to the procedure Update_D.-PowerSystem that is called from the

29

package body Dc-Power-.System is

package DCPA renames Dc-Power.System-Aggregate;

type Dc-Power-System-ConnectionNames is (

-- Connections from TRUs to dc..mains 1, 2, and 3

Connection7, Connection_8, Connection-9,

-- Connections from Dc-Main-1 to power bus CBs

Connect ion_10, Connection1l,

-- Structure for each Connection

type A-Dc-Pover-System-Connection is array (Integer range 1 .. 2) of
DCPA .Element-Point;

type Dc-Power-System-Connections is array
CDc-Power-.System-Connect ion-Names) of A.Dc-Power.System.Connect ion;

-Table which provides a cross reference between each Connection
-and information on each Point on it.

The-Dc-PowerSystem-Connect ions :constant
Dc-Power-System-onnections C

Connection7 => (
2 => (Element => Global..Types.ABus,

Bus-Element => DCPA.DcMainjl,
Bus-Side => 1),

1 => (Element z-> Global-ypes.A-Tru,
Tru-Element => DCPA.Tru-1,
Tru-.Side => Tru-Object-Manager.Dc-Side)),

Connect ion_8 => (
2 => (Element => GlobalTypes.A.Bus,

Bus-Element => DCPA.DcMain_2,
Bus-Side => 1),

1 => (Element => Global_.Types. A-Tru,
Tru..Element => DCPA.Tru2,
Tru-Side => Tru-bjectManager.Dc.Side)),

end Dc.Power.System;

Figure 8. DC-Power-System Package Body [29:125,126]

30

body of the Flight -Executive package. The Flight_-Executive package exports the single proce-

dure UpdateFlightExecutive that gates all the executive-level connections to a system (via the

Flight _ExecutiveConnections package), then it calls Update_{systemname}_ -System for each

system that is visible to the flight executive. The updating of the system is executed by using

a tabular schedule of systems to update [29:28]. "The names of the systems are declared in the

package Flight_-Systems -Names, the sole purpose of which is to enumerate the names" [29:28].

The executive-level connections are defined in the FlightExecutiveConnections pack-

age, and this package contains procedures to gate systematically all the executive-level connec-

tions in the flight executive. The system-level connections are declared in the DCPowerSystem

package; although, the DCPower-SystemConnections package is shown as separate from the

DC-PowerSystem package in Figure 9. "The separate package (for DCPowerSystemConnections)

is drawn for notational simplicity" [29:27]. All the dependencies originate from the bodies of the

packages to reduce the need for widespread recompilation if there is a code change in one of the

packages.

3.6 Overview Summary

The SEI's OOD Paradigm provides an informal method to map real entities from a description

such as a schematic diagram to a graphical design specification. The key abstractions of the design

are:

* Objects

* Connections

" Systems

" Executives.

Each of these symbols maps to a component within a software architecture.

31

Flight-Executive

FlighttExecutive-Conntctuons Engine-System DC.PowerSy stem ACPower-System

DC-Power-SysemAggrepte DC _owerSystetnConnections

CB..object-Manager ThU Objectj-1anager Bus-Object-Mmtger

Figure 9. Executive-Level Software Architecture

32

A class of objects is implemented by an object manager package that defines the methods and

procedures for that object. Connection packages are implemented for systems and for the executive.

The connection packages for systems are nested within the system package, but the flight executive

connections are in the Flight _Cornect ions package. Each system is defined by a system aggregate

that names all objects within the system. The connection packages have visibility to the aggregate

package to have named access to the system's objects.

Executive-level connections to a system are gated prior to gating the connections to a system

Once all system-level connections are gated the system is in a consistent state. Each system provides

a single procedure, Update_{systemname}, that gates all connections within a system.

The paradigm is designed with the concept of parallel execution of executives on separate

processors, but no explicit method is provided to support parallelism. The question of how to

extend this paradigm and its associated architecture to support concurrency is addressed in the

next chapter.

33

IV. Analyzing the SEI OOD Paradigm for Concurrency

,. I Introduction

Concurrency nay exist at many levels within a simulation designed using the SEI OOD

Paradigm. There may be a course-grain concurrency at the system level, medium-grain concurrency

at the object level, or fine-grain concurrency at the instruction level. The speedup that can be

achieved in parallelizing a simulation designed by using the SEI OOD Paradigm may be limited

by the amount of parallelism that can be used at each of these levels. This chapter presents an

analysis of the concurrency that exists within a simulation designed using the SEI paradigm.

The goal of this analysis is to find a level of concurrency that can be implemented for simu-

lations designed using the SEI paradigm. The SEI's DC Electrical System Simulation (DESS) will

be the specific example used to conduct this analysis, but the analysis will be done so that it can

be applied to other simulations designed using the SEI's paradigm, or to other systems designed

using the paradigm, e.g., the engine system, the fuel system, etc..

An informal analysis using English-language descriptions is presented, as opposed to a formal

logic analysis using a language such as Chandy and Misra's parallel design language, UNITY [10].'

The first section of the analysis addresses the factors that affect the potential speedup that can be

achieved using any level of concurrency, and the following sections address the potential course-

grain, medium-grain and fine-grain concurrency that can be added to the design of a simulation

based on the SEI's paradigm.

4.2 Analysis

4.2.1 Factors that Affect Potential Speedup. The goal of implementing concurrency in a

simulation (or any other program) is usually to decrease the execution time of the simulation

' Using the UNITY language provides a good representation for describing and proving the correctness of a parallel
algorithm; however, an English-language description is presented here.

34

(or other program). This decrease in execution time is called speedup and it is defined by tile

equation [14:4]:

T1Sp = TP (1)

where T = execution time of the best sequential program on a single processor

Tp = execution time of parallel program using p processors.

To achieve a linear speedup, the value of Tp must decrease in direct proportion to the number

of processors used. Ideally, going from one processor to two processors should yield a speedup of

S, = 2, using four processors should yield a speedup of S4 = 4, etc.. This type of linear speedup

is desirable, but it may not be achievable due to the effects of load imbalance, communications

overhead and synchronization or serial dependencies between processors. Any level of concurrency

that can be exploited in the design and implementation of a parallel simulation based on the SEI

OOD Paradigm will be affected by these three factors.

4.2.1.1 Load Imbalance. If the total amount of work (load) performed by one processor

is equal to Wsq with execution time T1 , then for p processors the execution time for each processor

should be T- if each processor has a balanced load equal to W-9 and communications overhead is
P p

negligible. If each processor does not have a load equal to -, then the processors have a loadp

imbalance, and the execution time of the simulation is driven by the processor with the largest

load. The execution time of the parallel simulation is equal to the longest execution time of any

of the p processors. The execution time for p processors that are load balanced is equal to -T, and

the speedup of the simulation is equal to

_= p. (2)

P

35

If the load is not balanced on each processor, then the speedup is a function of the maximum

execution time of all the processor execution times, Tp_... where Tp_., > T due to the load
p

imbalance. The speedup for a load imbalance is then equal to

sp = T P. (3)

Thus, the speedup for the simulation is less than p for a load imbalance, and a linear speedup is

not achieved due to the load imbalance.

4.2.1.2 Communications Overhead. Another factor that can prevent achieving a linear

speedup is the overhead due to communications between processors. A simulation such as the DESS

will require the exchange of information between processors due to state data being transferred

between systems or objects in the simulation. Transferring this information requires a finite amount

of time, and this time adds to the execution time of the parallel simulation. For a distributed

memory system such as the iPSC/2, the amount of time required to transfer information between

processors varies depending on the amount of data transferred between systems [28]. The transfer

time increases as the message size increases. The time required to transfer data on each processor

will increase the value of T for each processor. If the communications operations can be overlapped

with computations, or the amount of communications can be reduced; then the impact of the

communications overhead on Tp can be decreased.

4.2.1.3 Synchronization/Serial Dependencies between Processors. A parallel program

executing on several processors may require synchronization between processors due to the algo-

rithm used by the parallel program. For example, if two processors are each running half a parallel

simulatioh, (i.e. each processor has one-half of the workload that would be done by a single proces-

sor), and processor 1 generates a value required by processor 2 to execute its part of the parallel

simulation, then a synchronization dependency exists between the processors. If processor 2 is idle

36

waiting for the information from processor 1, then the execution time of processor 2, T22 , increases

by the amount of time spcrt waiting. If the amount of time spent waiting by processor 2 is T,,aing,

and the workload on each processor is W,, then the execution time of processor 2 is equal to

T22 = T, + Twang2 (4)

2

and the speedup of the simulation is equal to

T,
S2 = < p (5)

2 +

where p = 2. Thus, a less than linear speedup will be achieved due to the increase in Tp of

processor 2 that is caused by the synchronization dependency.

Eliminating synchronization dependencies or reducing the amount of idle time spent between

synchronization points will increase the potential for a lineai speedup. For the example discussed

above, Twait,n"2 can be reduced by having processor I send its data to processor 2 as soon as

possible, and having processor 2 execute as much of the workload that it can prior to waiting for

processor I's data to be received. Decreasing the waiting time using this method is limited by

the amount of work that processor I must do prior to sending data to processor 2, and it will be

limited by the amount of work that processor 2 can do prior to having to wait for the data from

processor I.

4.2.2 Course-Grain Concurrency. A full simulation developed using the SEI paradigm will

contain many systems that may exhibit course-grain concurrency. Course-grain concurrency exists

if the systems within the simulation (engine system, fuel system, etc.) can execute independently

and asynchronously for large periods of time, and the systems spend small periods of time in

synchronous operation. The SEI paradigm was designed with parallelism at the system-level in

mind [30:11].

37

This course-grain concurrency can be used to map a system to each processor on a distributed

memory architecture such as the iPSC/2 Hypercube. The processors execute the operations of a

system asynchronously until information has to be passed between systems. Information must be

passed between systems when executive-level connections are gated. Synchronization occurs for

each iteration of the simulation when the executive-level connections are gated; but each system

can update itself asynchronously when each system gates its system-level connections.

If a simulation with 100 systems is parallelized by mapping a system to each of 100 pro-

cessors, then the potential speedup of the parallel simulation is equal to 100 if T100 = T. This100"

linear speedup of the simulation is not likely to be achieved due to load imbalances on each proces-

sor, communications overhead and synchronization required to transfer state information between

systems in the simulation.

A load imbalance of the simulation using system-level, course-grain parallelization may occur

due to each system having a workload different than W. Some systems may have a workload100

greater than this, and others may have a workload less than this. The execution time of the

simulation will be driven by the system with the largest workload.

Communications overhead will be introduced due to message passing between systems on

different processors. Executive-level connections are used within the SEI Paradigm to transfer

information between systems, and gating these connections between systems on different processors

will require a finite amount of time to transfer data. The overhead due to communications will

be a function of the number of messages sent between processors, the size of the messages and

the amount of processor time required to send messages. If computations can be overlapped with

communications on each processor, then the effects of communications overhead can be reduced.

Another factor that will decrease the potential speedup is synchronization dependencies be-

tween the system on each processor. For example, the DC Power System (DPS) in the DESS

receives inputs from the AC Power System (APS) and the Dummy System (which simulates the

38

load on the DC Power System). The APS provides an AC voltage to the TRUs in the DPS when

the executive-level connections between these systems are gated. The Dummy System (DS) sends

load information to the DPS when the executive-level connections between these two systems are

gated. The DPS then updates its system-level connections based on the inputs received from the

executive-level connections. After the DPS has updated its state by gating its system-level con-

nections, then a series of executive-level connections that transfer load information from the DPS

to the APS would be gated. 2 Also, the DPS would have executive-level connections that send

voltage data to the DS. The APS and DS may not be able to update their states until after the

DPS has finished gating its system-level connections and sent its new load and voltage data via

the executive-level connections back to the APS and DS. Therefore, the potential speedup of the

simulation may be reduced to a less than linear speedup due to the synchronization dependencies

between systems on different processors.

The final factor to consider in using course-grain concurrency is that the potential speedup

for a simulation is limited by the number of system within the s;mulation. For the example, in the

100 system simulation mentioned above the potential speedup is limited to 100 if the effects of load

balancing, communication overhead and processor synchronization are negligible. If the effect of

these factors is not negligible the actual speedup could be 50% or less of the potential 100 times

increase. If a parallel machine with more than 100 processors (such as a 1024 processor hypercube)

is available for running the simulation; then using the course-grain level of concurrency, it will not

be possible to use the larger system to achieve a potentially higher speedup. A greater speedup may

be possible using a lower level of concurrency. For instance, if a lower level of concurrency could be

used such that the 1024 processors are used to execute part of the simulation mentioned previously

and if only 20% of the potential 1024 times speedup is achieved, then the achieved speedup using

the lower level of concurrency would be more than twice the potential speedup of the course-grain

21n the SEI's implementation of the DESS, the APS and the DS are "stubbed-out" and the execut;ve-level

connections that would transfer information from the DPS to the APS and DS are not implemented. if a full
implementation of the APS and DS were done, then these connections would be required.

39

simulation using 100 processors, i.e.,

S 1024 = 0.2(1024) = 204.8 > 2 x 100 = S100.

4.2.3 Medium-Grain Concurrency. Medium-grain concurrency can be implemented at the

object level in a parallel simulation designed using the SEI OOD Paradigm. Concurrency appears

to exist at the level of operations that are done to objects, such as the gating of connections. This

lower level of concurrency is classified as medium-grain concurrency since the grain of sequential

operations is the execution of a method on an object.

The potential speedup using medium-grain concurrency is a factor of the number of objects

or connections that can be processed in parallel. If each of the 100 systems mentioned above has

an average of 60 objects and if five to six objects are mapped to each processor, then all 1024

processors of the hypercube mentioned previously could be used to execute operations on objects

in parallel. By concurrently gating the connections that are associated with the objects on each

processor node, all 1024 processors can execute in parallel. If delays due to communication overhead

are :ninimal and load balancing of the processors is achieved, the potential speedup limit would be a

1024 times increase instead of the 100 times increase possible through system-level parallelism. By

using medium-grain concurrency, more processors may be used to try to achieve a higher speedup.

In the DESS simulation the objects do appear to have concurrency; the objects can change

their states simultaneously. However, a problem is seen when the algorithm of the simulation is

investigated in more detail. The simulation executes by modeling the flow of energy through the

objects in the simulation. For example in Figure 3, page 23, voltage and load conversion factor

(LCF) data are transferred from TRU_2 to Main_2, then from Main_2 to CB_2.1 and CB_2.2. The

voltage and LCF data for all objects in the DESS is transferred in this way. After all the voltage

and LCF values are transferred, load data is transferred from CB_2.1 and CB_2.2 to Main-2, and

then from Main_2 to TRU_2. Thus, the processing of load information is in the reverse order and

40

opposite direction of the voltage processing. Load data for all the objects in the DESS is transferred

this way.

The voltage and LCF values sent from Main_2 to CB_2.1 and CB_2.2 (VM. ._ and LCF,.O)

are calculated by using the input voltage and LCF from TRU_2, i.e.,

V M.i._. = f(V,.,2)

LCF.,,,._ = g(LCFTR,-U)

The load sent from Main_2 to TRU_2 is calculated using the input loads from CB_2.1 and CB_2.2

and the LCF.,,,,,_ value previously calculated when the voltage and LCF data where sent to Main_2

from TRU_2. The load sent from Main_2 to TRU_2 is represented by the following equation:

= h(IC2 1, Ic_2.2, (LCFTRU.i))

Due to the way voltage and LCF data are transferred between objects, and the dependency of load

data on LCF data (as shown in the equations above), an ordering for the gating of connections

for the objects in the system is required. This ordering of the processing of connections is further

complicated by the tie buses. As noted in Chapter III, the tie buses are reprocessed because they

have current and voltage flowing in both directions. The tie bus voltages are processed after all

the other voltage and LCF connections for the objects are completed. Then the load information

is processed for all the connections. When this is finished the load information for the tie buses is

processed. The processing of the tie bus voltages, LCFs and loads adds more dependencies to the

processing order. Thus, a level of concurrency does exist in the transferring of information between

objects; however, the amount of concurrency is conditioned upon the dependencies between the

41

processing order of the connections. The dependencies within the DESS and their effect on the

level of parallelism that can be achieved are addressed furtLer in Section 4.3.

Thel mudium-grain concurrency described is a natural level of concurrency that exists due to

the way the SEI paradigm implements updating of systems by gating connections. The operation

of a system is simulated by the state of a system being changed through the action of gating

connections, and gating of connections is the "action" of the simulation.

An object is acted upon by a connection that requests a service from the object, i.e. when

a connecticri is gated the connection requests information from an object, and then gives that

information to inother object. The two objects have no knowledge of the connection that exists

between them: this information is embedded in the system's connection package.

The parallelism that can be implemented in the gating of connections is limited only by the

algorithm used in calcula ting state information within a system. In the ideal case all the connections

could be gated concurrently, and in the worst case each connection must be gated sequential one

after another. These levels represent the extremes of connection gating concurrency, and the level

of concurrency that can be achieved for a particular system simulation is dependent upon the

algorithm and the simulation model being used for that system. For the DESS, the limiting factor

to having all connections gate concurrently is the method of modeling the system by the flow of

energy between objects, The speedup that can be achieved by implementing parallel-connection-

gating for the DESS is a function of the dependencies of the connections in the DESS. Section 4.3

is an analysis of the these connection dependencies.

4.2.4 Fine-Grain Concurrency. Fine-grain concurrency is a level of concu:rency for which

the grain size is each instruction executed, e.g., addition, multiplication, etc.. From research re-

ported in [28], the iPSC/2 Hypercube does not appear to be as well suited for fine-grain concurrency

as it is for medium-grain concurrency. Therefore, medium-grain concurrency is the lowest level of

concurrency considered in this analysis.

42

4.3 Co,,nection Dependencies

The level of concurrency that can Le derived using the parallel-connection-gating method

described above is a function of the connection's processing-order dependencies. For the DESS

sinmlation, the connection processing-order dependencies are due to the simulation of the circuit

by the flow of voltage from one side of the circuit to another, and the flow of current through the

circuit in the opposite direction.

All the connections in the DESS must be enumerate in order to analyze the connections

processing dependencies. In the original SEI simulation, 52 connections are declared for the DC

Power System. Sixteen connections are executive-level connections and 36 connections are system-

level connections. As mentioned in Chapter III, the connections are processed in one direction

for voltage and LCF data, and in the opposite and reverse direction for load data. Also, 19 of

the connections are reprocessed for voltage, LCF and load for the tie buses. If a connection is

redefined to be a one-way transfer link from a source to a destination, then the DC Power System

has 110 system-level connections, and 16 executive-level connections. Table 1 shows how all the

original two-way connections and tie bus connections are renumbered as one-way connections. This

numbering scheme is used in the connection dependency graph shown in Figure 10. The connection

dependency graph is derived from an analysis of the simulation modeled used in the DESS, and

the design of the circuit.a

Figure 10 shows the connection paths between objects in the DC Power System and their

numbering in a graph format for voltage connections, and load connections. The nodes of the

graphs correspond to the objects in the DC Power System, and the arcs are the system-level

connections for voltage, LCF and load. The numbers of the connection arcs correspond to the

connection numberings from Table 1. If the connections are processed in order from 7 to 116,

then all the dependencies of the connection gating are handled correctly (as done in the original

3 Deriving this dependency graph is very application specific, but may be able to be automated for other applica-
tions. For this analysis the graph was manually derived.

43

Table 1. New DC Power System Connection Enumerations
Original Connection Type Data Sent New Connection Type Data Sent

Connection_7 Voltage, LCF 7 Voltage, LCF
Connection_8 Voltage, LCF 8 Voltage, LCF

... Voltage, LCF ... Voltage, LCF
Connection_41 Voltage, LCF 41 Voltage, LCF
Connection_42 Voltage, LCF 42 Voltage, LCF
Connection_23 Voltage, LCF 43 Voltage, LCF
Connection_22 Voltage, LCF 44 Voltage, LCF

Voltage, LCF ... Voltage, LCF

Connection-l Voltage, LCF 55 Voltage, LCF
Connection_10 Voltage, LCF 56 Voltage, LCF
Connection_28 Voltage, LCF 57 Voltage, LCF

Voltage, LCF ... Voltage, LCF

Connection_24 Voltage, LCF 61 Voltage, LCF
Connection_42 Load 62 Load
Connection_41 Load 63 Load

... Load ... Load
Connection_8 Load 96 Load
Connection_7 Load 97 Load

Connection_10 Load 98 Load
Connection-l I Load 99 Load

Load ... Load
Connection_22 Load 110 Load
Connection_23 Load 111 Load
Connection_24 Load 112 Load

... Load ... Load

Connection_28 Load 116 Load

44

sequential program). The graph in Figure 10 shows that several objects have four connections

between objects, i.e., connections 23, 43, 81, and 111 for TB 1 (Tie Bus 1) and CB T1.2 (Tie Bus

Circuit Breaker 1.2). These connections show that four messages are passed between TB I and CB

T1.2. The first two messages are voltage and LCF dat-, and the next two messages are load data.

A directed, acyclic graph of the DC Power System processing ordering connection dependen-

cies is shown in Figures 11 and 12. Each node in the graph represents a connection, and the arcs

show the dependencies between the connections. For example, connection 7 is not dependent on

any other connection, but connection 7 must be processed before connections 10; 11, and 16 can

be gated.

To determine an estimate of the potential speedup that can be achieved using the parallel-

connection-gating, the critical path through the connection dependency graph must be found. This

critical path is only an indicator of the potential speedup that can be achieved, but if the estimate

is less than one, then no potential speedup exists for the DESS using the parallel-connection-gating

method due to the serial execution dependencies of the connections in the DESS. If the length of

the critical path is greater than one, then the potential for speeding up the DESS exists, but the

actual speedup will be contingent upon how efficiently the parallel version of the DESS is designed.

The design of the DESS is addressed in the next chapter.

If the time to gate a connection is approximately the same for any connection being processed

and the cost of gating a connection is equal to unity, then there are several critical paths in the

connection dependency graph that have the same maximum length - 20 units. One critical path

that has an execution cost of 20 units is the path: 7, 16, 19, 23, 27, 28, 29, 30, 40, 64, 74, 75, 76,

77, 81, 83, 86, 106, 109, 110. Other paths of length twenty start from 8 and 9 and end at 110 or

111. Since the maximum critical path length is 20, this is the minimum execution time that may

be achieved by parallelizing the connection processing. If all the DC Power System connections are

processed sequentially then the execution time would be 110 time units (assuming unit execution

45

TRU I R3

9T 9

40.88 51,93

M-i0 t, M.. 2.1

56.94 4 549 39 20

16,104 "10,98 "11,99 17,105 12.100 "19,106 13,101 4,102 15.103

CBG - B 1. 2 CB 1.3 CB 2.1 CB 2.2 (CB 3.1 CS 3.2 CB 3.3 Ca 3.4

47.853 ." -..

Fiur 10. Vo3age L3F and Loa Conctosrp

DC I DC 2DC 3DC 4 DC 5 D46

16 10 3 1 37 Is 35 1 3 3 32 !4 5 1

19 33 56 55 20 3 436 0 7 3 8

,61 1'3 69 ,6

T 'T

V V,

Utp Legend

477

Graph Legend

x V oltage Connection 1~z 6. 3 62

-Connection from the

(0 Current Connection previous graph

U73 72

Figue 12 ConectonsDepedenc Grph -Par 2 (oad

48 a

time for each connection processed). Thus, the upper limit on speedup for the DC Power System

is

timesequential 110

timecriticalpath 20

To achieve this 5.5 time speedup at least six processors are needed, and using more than

six processors will not result in any further speedup. To obtain the 5.5 time speedup potenial

the connections must be able to be scheduled on the six processors so that all the connections are

processed in order and no processor requires more than 20 time units to execute. One schedule

that meets this requirement is shown in Table 2.

The schedule in Table 2 was generated by assuming that the cost of processing each connection

was the same and equal to unity. If processing one connection involves reading state information

from one object on a node and sending that information to an object on another node, the assump-

tion of unity time for connection processing may not be correct due to the time that it takes to

send a message between nodes. For the iPSC/2 Hypercube the average time per byte of sending a

message is as shown in Table 3. The average time to execute a floating point operation is shown in

Table 4. Table 3 shows that the transfer time per byte decreases as a function of the message size

sent. If we compare the time that it takes to send a floating point value against the average time

that it takes to do a floating point calculation (0.00883 msec), then we get an idea of the cost of

sending a floating point value in terms of the number of computations that can be accomplished

while the message is being sent. Using values from the tables, we see that in the time it takes to

transfer one floating point number (8 bytes) between nodes, 44.5 floating point operations (FPOs)

can be executed. If 128 bytes (16 floating point values) are sent between two nodes then 5.1 FPOs

can be done in the time that it takes to transfer one floating point value. Although the total transfer

time for the 128 bytes is longer than the time it takes to transfer 8 bytes, the number of FPOs that

49

C, 00 0 I=- c ~ 0 0 In

00 LO~ Iz t- LOt
-C: CD) CD - 0

00

oo 00 00

cl 00 -~ 0

C/ " t- 0
bO t -0

M o q MN V4

0
L4- C,1 04 t C CD
r- 00 00 O

0 t-0 1

U- 0D- C14 0000o t

U, trV LoU

0q 00 D ot -C4

Xd Ln- t- 00 05 0 v

C1 q q

C) V L Lf M D

- -- Cql '1

01 C C'4 o t- 00

-t~- 000 M C"4 C4

50

Table 3. Measured iPSC/2 Communication Times (msec/byte)

Block Size Time for Block Avg. Time per byte
(bytes) (msecs) (msecs/byte)

1 0.3438 0.3438
8 0.3930 0.04913

128 0.7213 0.005635
512 0.8581 0.001676
1024 1.0450 0.001021
2048 1.4125 0.0006897
4096 2.1375 0.0005219

Table 4. Average Floating Point Computation Time (msec)
Addition Subtraction Multiplication Division Average
0.00740 0.00770 0.00870 0.01150 0

can be done per transfer of a floating point value decreases for a 128 byte message. This shows that

the cost of processing a connection that transfers data between nodes may be more than the cost of

executing a connection that does not transfer data between nodes, and this cost is a variable cost

that is function of the size of the message sent when processing a particular connection. A message

consisting of voltage and LCF data would be approximately 10 bytes in size (8 bytes for LCF

floating point type, 1 byte for the voltage discrete type, and 1 byte overhead for the record that

contains these values). A load message would be 8 bytes - the size of a single floating point value.

Thus, approximately 40 FPOs can be done in the time that it takes to send voltage and LCF, or

load data between two iPSC/2 nodes. If the destination processor has 40 FPOs to execute before

it needs the data sent by the source processor, then the cost of the communications will not be

noticed since the communications will be overlapped by computations. However, if the destination

processor has fewer than 40 FPOs to execute, then the processor will be delayed by the amount of

time that it must wait to receive the incoming data. Therefore, calculating the cost of processing a

connection that transfers data between two processor nodes is contingent upon several factors and

may have a cost greater than unity.

51

The above discussion shows that minimizing the cost of processing connections between pro-

cessors is an important consideration in implementing the connection-level concurrency, and the

design should be implemented so that the cost of processing connections is minimized by overlap-

ping communications and computations. The potential speedup that can be achieved is limited by

the costs associated with the processing of connections between processors.

4.4 Analysis Summary

Two levels of concurrency may be implemented for a simulation built using the SEI OOD

Paradigm and run on the iPSC/2 Hypercube. Course-grain system-level parallelism is one level

of concurrency that can be implemented. This level of concurrency is implemented by mapping

systems to processors and each system running asynchronously to update itself, and synchronizing

when executive-level connections are processed between systems. The potential speedup that can

be gained using system parallelism is limited by the number of systems in the simulation, the

communication costs and the synchronization dependencies between systems.

The other level of concurrency that can be implement is medium-grain concurrency done at

the object level. Several system-level connections can be gated in parallel if all processing order

dependencies are handled correctly. Due to processing order dependencies in the DESS, a potential

5.5 time speedup is possible if communications overhead is minimized. This 5.5 time speedup would

add to any speedup that can be gained by implementing course-grain system parallelism. To achieve

the maximum speedup possible, the parallel gating of connections must be done efficiently by the

parallel processing algorithm. The next chapter addresses the design of the parallel processing

mechanism needed to implement course-grain and medium-grain concurrent connection processing.

52

V. Design and Implementation of Parallel Extensions

5.1 Introduction

The SEI Paradigm exhibits two levels of concurrency that can be used to design and im-

plement a parallel simulation. Large-grain concurrency can be implemented by having multiple

systems within the simulation running on separate processors. Medium-grain concurrency can be

implemented by gating connections in parallel within each system. The large-grain concurrency

and the medium-grain concurrency can both be implemented by designing a connection-processing

mechanism that handles executive-level connections and system-level connections in parallel. The

following section presents the design of a parallel connection-processing mechanism using these

concepts.

5.2 Parallel Design - High-Level

5.2.1 Adding Parallel Communications. The SEI Paradigm has four primary components

that comprise any design: objects, connections, systems, and executives. To implement concur-

rency within tLe simulation, one or more of these components must handle the communications

between objects on separate processor nodes. In extending the design of these objects to imple-

ment concurrency, the original design goals of the SEI OOD Paradigm must be considered, and the

parallel design extensions should not significantly modify the architecture of the original design so

that the benefits of the paradigm's design architecture are maintained. Significant changes to the

paradigm's design architecture may reduce the benefits of reusablity provided by the design [41], or

may make the parallel architecture too application specific to be applied to other simulations de-

signed using the SEI Paradigm. The method used to implement the concurrency in the simulation

should be done without invalidating the design goals achieved in the original sequential design.

A goal of the SEI paradigm is to simplify dependencies between objects [30:8]. The objects,

as implemented in the original DESS simulation, only depend on the Global-Types package. The

53

Cb, TRU and bus objects have no dependencies on each other, and the objects have no knowledge

of connections between each other. Having objects handle communications between each other on

different processors will introduce dependencies between objects and violate one of the design goals

of the paradigm because objects will need to have knowledge of their connections to each other.

Thus, objects are not the components that should be used to implement the parallel communications

between the objects on different processors.

Connections were redefined in Chapter IV as one-way transfer links between objects. The state

of a simulation is changed by gating connections between objects based on an order of processing

defined by the method that the simulation uses to calculate the state of objects. Gating a connection

involves reading the state of a particular variable (or attribute) of one object and applying that

state information to another object. The object that the state is read from is the connection's

source and the object that the state is written to is the connection's destination. As part of

processing a connection, the state information from the source can be converted into the correct

type for the destination object. The conversion of data by a connection is allowed as part of the

connection 'ocessing to help eliminate dependencies between objects [301. Because connections

transfer information between objects, connections must know the locations of objects to transfer

information between objects properly. Thus, connections are a logical place to add the design

extensions needed for parallel communications between objects on separate processors.

5.2.2 Connection Gating. Systems and executives do not have to deal with parallel commu-

nications between processors if the connection packages handle communications between objects.

The system-level connections package can provide a connection gating procedure that gates local

intra-system connections between objects on the same processor and gates non-local intra-system

connections between objects on different nodes. This gating procedure provides the same func-

tionality seen in the sequential version of the simulation, and provides a single method for gating

any system-level connection. Executive-level connections require a gating procedure almost identi-

54

cal with the gating procedure for system connections, except that the executive connection gating

procedure must gate local and non-local connections between systems (inter-system connections).

The following algorithm defines the operations of the connection gating procedure:

1. Check to see if the connection source is local.

" If the connection source is local, then execute a local get_{attribute} on the source

object.

" If the connection source is not local, then execute a non-local get_{attribute} on the

source object. This involves reading a message from an input buffer, or requesting

information from a remote object. (The actual method to use for retrieving data from

a remote object is a design decision addressed in the Section 5.2.2.1).

2. Convert, if necessary, any of the input data before sending the data to the destination.

3. Check co see if the connection destination is local.

" If the connection destination is local, then execute a local put_{attribute} on the

destination object.

" If the connection destination is not local, then execute a non-local put_{attribute}

for the destination object. This involves sending a message to another processor, or

requesting a remote operation on an object.

This gating method has a time complexity that is a function of the time required to execute a local or

non-local get_-{attribute}, the time required to execute any transformation of the data received

from the get_{attribute}, and the time required to execute a put-{attribute} on an object.

The time complexity of the getf{attribute} method may vary depending on the type of object

to which the method is applied. For bus objects, the time complexity of the get_{attribute} is a

function of the number of sides that a bus has, but the number of sides that a bus has is constant.

55

Therefore, the get_{attribute} for buses has a time complexity of O(constant), and the time

complexity of the gating procedure is constant time, O(constant).

Objects within the simulation maintain internal state variables that are changed by gating

connections. These state variables are changed based upon inputs applied to the sides of the

objects. For objects such as buses that have several inputs and outputs, all inputs must be received

before the outputs are calculated. Thus, before a connection can be gated, all the inputs to the

source object must be applied by either another connection being gated or the object's inputs

being initialized. If the DESS connections are processed such that all the dependencies between

connections shown in Figures 11 and 12 are met, then all the required inputs for each object will

be received prior to the object's state being read and sent to another object.

5.2.2.1 Retrieving Data and Sending Data to Non-Local Objects. Only one instance

of an object is generated in the sequential simulation, and that single object maintains the state

information for the object. In the sequential simulation, when a connection is gated a single source

object is read and a single destination object is written.

Gating connections for the parallel simulation involves retrieving information from objects

located on different processors. Two possible methods of handling the gating of connections with

source objects and destination objects on separate processors are: to have multiple copies of objects

on a processor or to have a single copy of any given object on a single processor.

9 Multiple Copies of Objects. In the parallel simulation it is possible to have multiple copies of an

object on different processors, e.g., CB 1.2 could be instantiated on pr, cessor 1 and processor 2

with each processor maintaining a separate copy of the state of CB 1.2. The advantage to

having multiple copies of an object on a processor is that all the objects needed to gate a series

of connections can be local copies of objects. This keeps the gating of connections to local

communications only, and thus reduces the cost of gating each connection on a processor.

In the connection gating algorithm described above, this would mean that only the local

56

get_{attribute} and put_{attribute} procedures are executed when a connection is gated.

Thus, by having a mechanism that keeps the states of the CB 1.2 on processor 1 consistent

with the copy of CB 1.2 on processor 2, only local get and puts are needed to gate connections

and the cost of gating a connection is minimized.

The disadvantages of multiple copies of an object are, 1) that the mechanism required

to maintain consistency between two, three, four or more copies of an object on separate

processors is complex, and 2) message traffic between copies of objects on different processors

will be high if the state of an object changes often. The multiple copy method is complex

because passing messages between object copies and making sure the correct state is consis-

tently maintained requires a way of determining which incoming state message is the most

current. Also, the message traffic introduced in passing state information between object

copies is high if an object has several state transitions due to several puts and gets being

executed on the object by several different connections.

Single Copies of Objects. It may be simpler and more efficient to have only one copy of

an object on any given processor, e.g., there is only one copy of CB 1.2 on processor 1. If

a connection that has CB 1.2 as its destination is gated on processor 2, then a message is

sent from processor 1 to processor 2 with the data from the connection source object on

processor 1.

One advantage of having a single instance of an object on only one processor is that the

object's state information is located in only one place. Thus, since the state of an object is

maintained in only one location, the consistency problem is eliminated. When a connection

is processed for objects on different processors only a single message is sent between objects.

and the potential message traffic between processors is reduced.

Another advantage of single copies of objects on processors is that. less memory is

required than when multiple copies of objects are spread across several processors in the

57

simulation. The rest of this design is based on having only one copy of an object instantiated

on any processor in the parallel simulation.

.5.2.2.2 Instantiating and Maintaining Location Information of Objects. The system

aggregates instantiate objects and allow named access to objects, so the system aggregates are the

place to add extensions for determining where an object is. Each system aggregate can maintain a

system object map that has the location of all the objects that are part of that system. The system

aggregate can instantiate the objects located on that processor node, and provide the location of

other system objects on other nodes. When a connection is gated, the connection gating procedure

in the connection package can query the system aggregate package to determine the location of the

connection source and destination. Using the system aggregates to maintain location information

for objects in the system fits within the functions defined for the system aggregates in the SEI's

paradigm, and does not require significant changes to the way system aggregates are implemented

in the sequential simulation.

The DESS has three systems, the AC Power System, the D,,mmy System and the DC Power

System. A copy of the system aggregates for each of these systems is on each processing node

in the parallel DESS simulation. Each aggregate can read information from an object map that

identifies where each system's objects are located. Each aggregate instantiates only the objects

that are mapped to that processor. When executive-level connections are gated, the flight executive

connections package will query the AC Power System Aggregate, the Dummy System Aggregate

and the DC Power System Aggregate to determine the location of the source and destination

objects for the executive-level connection being gated, and local and non-local inter-system get and

put procedures will be executed based on the relative locations of system objects. When a system-

level DC Power System connection is processed, then the DC Power System Aggregate is queried to

determine the location of the source and destination objects when the system-level gating algorithm

is executed. Local and non-local intra-system puts and gets are executed based on where the source

58

and destination objects are located. The executive-level connection processing is executed by calling

the UpdateFlight-Executive procedure as is (lone in the sequential version of the simulation. The

systen-level connections are gated by executing the Update_{system-name} System procedure. For

the DC Power System, this procedure is the UpdateDCPowerSystem procedure.

,5.2.3 Connection Processing Dependencies. Connection processing dependencies must be

handled correctly if the parallel simulation is to generate the same object states that the sequential

simulation generates. An efficient method of connection processing must be done, and the method

must allow parallelism in the execution of connection gating. Also, the method should be easily

scaled for various numbers of processors. The connection processing mechanism can use several

approaches to determine the order in which to gate connections.

One method of connection process ordering is to have a topological list of connections that

need to be processed on each node. The list would be a list of connections that need to be

processed for the objects that are located on a particular processor. The topological list is ordered

such that if the first connection is processed, and then the second connection is processed, etc., then

the connection dependencies are handled such that all the dependencies are met. Horowitz and

Sahni [25] describe various algorithms for generating a topological list using a topological sorting

algorithm. The algorithm they present can be used to generate different topological lists based on

the dependencies between nodes in a graph such as the one shown in Figures 11 and 12.

There are several possible topological orderings for connection processing for the connection

dependency graph shown in Figures 11 and 12. The topological list method uses only one of the

many possible orderings. The number sequencing of the DESS system-level connections shown

in Table I is a topological ordering of cornections 7 through 116 such that if each connection is

processed in order from 7 to 116, then all the connection dependencies shown in Figures 11 and

12 are met. This topological ordering was generated by manually applying Horowitz and Sahni's

59

Topological Sorting Algorithm [25:3031, and is also based on selecting an ordering that has the

same sequence of connection gating as in the sequential simulation.

The topologically-ordered list is maintained in an array data structure and the connections

are gated by gating the first connection in the array list, then the second connection, etc.. When

using the topological list method, if a connection is not ready to be gated, then the processor blocks

until the connection is ready to be gated. Therefore, the topological list method guarantees that

all dependencies are properly handled since all connections are only processed in the order of the

topological list.

Another method of determining which connection to gate is to use a graph traversal algorithm

that identifies which connections can be gated based on the dependency graph and the connections

that have been previously gated. This graph method may allow a higher level of parallelism than

the linear list method by allowing a determination to be made about what other connections can

be processed if the chosen connection cannot be processed.

The following example illustrates how the topological list method and the graph method work

for a simulation that has eleven objects and eleven connections, as shown in Figure 13(a). The

object diagram shown in Figure 13(a) shows that object A sends its voltage, VA, to object B when

connection I is gated. When connection 2, 3 and 4 are gated VB is sent to objects C, D and E, etc..

The dependency graph shown in Figure 13 (b) depicts the processing dependencies between the

connections of objects A through K. (These dependencies are similar to the dependencies between

objects in the DESS, but do not show additional dependencies that occur if load data and tie bus

connections are shown.) If objects A, B, C, F and I are mapped to processor 1, and objects D, E, G,

H. J and K are mapped to processor 2 (as shown in Figure 14), then some parallelism in connection

processing can be achieved. Connection I can be gated by processor 1 first, then connections 2,

3 and 4 can be gated. The gating of connection 3 and 4 by processor 1 requires a message, 1/,

to be sent to processor 2. When processor 2 gates connection 3 and 4, it reads the 14 messages

60

sent from processor 1 and applies VB to objects D and E to complete the gating of connections 3

and 4. Then processor 2 can gate connections 7 and 8. After connection 8 is processed, processor

2 can gate (-iection 11; but connection 10 cannot be gated until Vc is received from processor

1. After sending the messages for connections 3 and 4, processor 1 gates connection 5 and 6, then

connection 9. Processor 1 is now finished processing connections for this iteration of the simulation.

After gating connection 6, a message was sent to processor 2 with Vc; and upon receiving Vc from

processor 1, processor 2 gates connection 6 by applying Vc to object G, and then gates connection

10. This completes the processing of the connections by processor 2, and the objects on both

processors are now in a consistent, updated state.

A2

2 4

0 K

F G H

9 0 II

(b) Connection Dependency Graph
(a) Object Diagram

Figure 13. Example Object Diagram and Connection Dependency Graph

If processor 1 gates the connections in a topological order of {1, 2, 3, 4, 5, 6, 9} and processor

2 gates conr ctions {3, 4, 6, 7, 8, 10, 111; then each processor will correctly process its connections

as long as processor 2 waits to gate connections 7 and 8 until VB is received from processor 1, and

connection 10 is gated after receiving Vc. Processor 2 waiting to receive 17B and VC represents a

point of synchronization between processors 1 and 2. This synchronization can be accomplished

by using a blocking receive on processor 2. Processor 2 can attempt to gate connection 3 by

61

Processor I Processor 2

A

B

2 44

3 3

C 66 D E

5 7 8

F G H

Figure 14. Example Object to Processor Mapping

checking to see if VB has been received from processor 1. If VB has been received, connection 3 is

gated by reading VT from the processor's input buffer and applying VB to object D. If VB is not

available, then processor 2 can block until VB is received for connection 3. After V 8 is received

by processor 2, connection 4 would be gated similarly. Since processor 2 cannot execute any other

connections until VB is received, there is nothing else that processor 2 can do except wait until

VB is received. By blocking until each message from processor 1 is received, then all processing

dependencies are guaranteed to be handled properly because the topological order of connection

processing is maintained. All the connections will be processed on processor 2 in the order {3, 4,

6, 7, 8, 10, l1}.

Some inefficiency is introduced by using the topological list method if processor 2 blocks to

receive a connection, such as connection 6, when it couio be processing connection 8 and then 11.

Connection 8 can be processed anytime after VB is received and applied to object E, connection 4's

destination object. So if processor 2 is blocking to receive connection 6, then connection 8 could be

62

processed, and connection 11 processed after that. By blocking for connection 6 without consider-

ing the possibility of processing connection 8, processor 2 is idle when it could be executing other

work. This inefficiency can be reduced by having a mechanism that would execute connections 8

and then 11 while Vc was being sent from processor 1 to processor 2. This mechanism (called the

graph method above) must be able to determine that connection 6 cannot be processed, and deter-

mine that connection 8 and then 11 can be processed. This requires that the graph dependencies

be analyzed to determine what other connections can be gated instead of connection 6, and the

mechanism must have the capability to process connection 6 when VC is received by processor 2.

This mechanism will need to execute an algorithm similar to the following:

1. Determine the next connection to be processed based on the connections that have previously

been processed, i.e., if connection 1, 2, 3 and 4 have been processed already, then connections

6, 7, and 8 are possible connections that can be processed.

2. Choose one connection to be processed, i.e., connection 6. Determine if that connection can be

processed, or if the connection will be blocked because the required input is not yet available

from another processor. For connection 6, if Vc was not available then connection 6 cannot

be processed.

3. If the connection chosen is not able to be gated (connection 6), then choose another connec-

tion (such as connection 7) and determine if it can be gated. Since connection 7 is a local

connection, and since connection 3 has been gated, connection 7 can be gated.

4. Gate the connection. For our example, connection 7 would be gated and marked as having

been gated for this iteration.

5. Go back to item 1, and determine wh,:h ungated connection can be gated.

This algorithm requires that the dependencies of the connections be determined, and that the

connections that receive input from other processors be probed. Analyzing the connection depen-

63

dency graph for the next available connection involves more overhead than just going to the next

connection in a topological list.

The time complexity of this graph method is a function of the number of connections that

are gated and the number of times that the graph must be searched for a new connection that

can be gated without blocking. If there are C connections to gate, and none of the connections

are blocked due to unavailable data, then the time complexity of the algorithm is O(constant)

since the number of connections to be gated is a constant. However, if connections do block, and

a search of the connection dependency graph is done to find another connection to gate, then the

time complexity has a maximum of O(C * N), where N is the number of connections that can

block due to synchronization dependencies. Thus, in the best case the graph method has the same

time complexity that the topological list method does, but in the worst case the graph method has

higher time complexity. If the time required to execute the operations associated with the graph

method is less than the time that the topological list method spends blocking, when it could be

executing productive work, then the additional overhead of the graph method will be beneficial.

However, if the additional overhead of the graph method is more than the time spent biocking in

the topological list method then no benefit is gained by using the graph method.

Another factor to consider in comparing the topological list method and the graph method

is that while processor 2 is blocking to receive VB, processor 1 may be sending V' . Then when

processor 2 processes connections 3 and 4 after receiving VB, Vc may arrive and be available when

connection 6 is processed. Then the extra overhead involved in doing the graph method may not

provide any benefit because processor 6 may not have to block for Vc at all.

A final consideration in using the topological list method and the graph method is potential

dead-lock. Dead-lock can occur when two processors attempt to gate connections in such a way that

a circular wait condition occurs [15:157]. A circular wait may occur if, for example, two processors

(processor 1 and 2) gate connections X and Y such that each processor blocks for a message it will

64

never receive. If processor 1 gates connection X that requires an input from processor 2's connection

X, and processor 2 gates connection Y that requires an input from processor l's connection Y;

then, a circular wait will occur if processor 1 blocks for connection X before gating connection Y

(which sends data to processor 2) and processor 2 blocks for connection Y before gating connection

X (which sends data to processor 1). Each processor will wait for a message that it will never

receive due to the circular wait, and a dead-lock occurs.

The graph method avoids dead-lock because eventually processor 1 or 2 will gate connection Y

or X, respectively, and the circular wait condition will be broken. These conrections will eventually

be gated since the graph method searches for connections that can be gated if an attempt to gate

a connection is blocked. The topological list method avoids deadlock if each processor maintains

the same topological order for the non-local connections that it gates, e.g., processor 1 will gate

connection X then connection Y and processor 2 will gate connection X then connection Y. The

same topological order can be maintained on each processor if a single topological list is generated

and provided to each processor, and each processor only gates the connections in the topological

list for the objects that are mapped to that processor.

The graph method adds extra complexity and overhead but may provide only limited increase

in performance if an efficient topological ordering is used that minimizes blocking. Therefore, the

topological list method will be used for the design of the connection processing mechanism. By

having a single topological list on each processor, a good level of parallelism may be able to be

achieved and implemented in an efficient way. Also, by choosing a topological ordering that allows

messages to be sent to other processors as soon as possible and that allows as much processing

and communication overlap as possible to be done, then the topological list method should prove

efficient. For the example presented above a good topological ordering for connections on processor

1 is {1, 3, 4, 2, 6, 5, 9} and for processor 2 a good ordering is {3, 4, 7, 8, 11, 6, 101. 1 These orderings

I Note that the topological order of the non-local connections is the same for each processor, e.g., connections {3,
4.6}.

65

should minimize delays due to communications and reduce the amount of time that processor 2

spends blocking when it can be gating connections that are not blocked.

.5.3 Design Summary - High-Level

The design extensions that are required to add concurrency to the SEI OOD Paradigm are:

1. Provide a single method for the gating of system-level connections and executive-level con-

nections. This method will handle the parallel communications between objects by using the

following algorithm,

procedure Gate(ThisConnection) is

if ThisConnection.Source is local then
Input-Data get_{attribute} from This_Connection.Source.Object

else
InputDat = blocking-receive_{attribute-message} from the input buffer

end if;

if ThisConnection.Destination is local then
put_{attribute} to This_Connection.Destination.Object

else
destination-node = NodeLocationOf (ThisConnection. Source)
send_{attribute-message} to ThisConnection. Source.Object on destination-node

end if;

end Gate;

2. Modify the system aggregates so they can instantiate objects on a processor based on an

object map provided by the user. The system aggregate still provides named access to objects

that are locally available on a processor, but it also provides a method for determining the

location of any object in the system based upon the location specified in the object map. Each

processor has a copy of each system aggregate needed for objects mapped to that processor.

The Circuit Breaker, TRU and Bus Object Managers are the same design as used in the

sequential simulation, except the method Delete_{object} has been added.

66

Figure 15 shows the new architecture of the parallel DESS (PDESS). The only change to this

view of the design is that the system aggregates now have bodies, but they only had specifications

in the sequential version. The next section on low-level design describes the internal changes to

packages required to implement the new architecture on the iPSC/2 Hypercube.

5.4 Parallel Design - Low-Level

This section first describes changes required in the global types package and the electrical

units package, then the low-level design changes that are required in the package specifications

and bodies of each unit of the parallel software architecture shown in Figure 15 are described.

The low-level design of the object managers is presented after the changes to the electrical units

and global types, then the systems, the system aggregates and the system connection packages are

described. The flight executive and the flight executive connections package are described after the

system packages. The low-level design of the main procedure packages that run the simulation on

the iPSC/2 host and nodes are the last two low-level designs presented.

,5.,;. 1 Global Types and Electrzcal Units. As noted in (111, an electrical units package

and a global types package are used to define types that a; by all the packages within the

system. The global types package is modified to include constant variables required to implement

communications between the host and node processors on the iPSC/2. The electrical units package

require the addition of a single record type that contains the voltage and LCF data as a single

type. This is required to allow passing a single message for voltage and LCF on the iPSC/2. Also,

constants that define the size of various types used in the PDESS are defined to save the overhead

of function calls when determining the sizes of messages to be passed between processors.

5.4.2 Circuit Breaker, Bus and TR U Object Managers. The following methods are required

for each object manager in the parallel design:

67

FlightExecutive

FlightExecutive- DCPowerSystem
Connections

AC-Power-System- DC-Power System- DC-Power -System- Dun my-Sstem-
Aggregate Aggregat. Connctions Aggregate

CBAObject-Manager TRUj0biectManager BusObject Manager

Figure 15. New Executive-Level Software Architecture

68

" Bus Object Manager

-New-Bus

- Delete-Bus

- CGive-Voltage.Lcf-To

- Give-Current-To

- Give-PowerJnfo-To

-Get-Powerdnfo-From

-Get-Number-OLPoints-From

" Circuit Breaker Object Manager

- New-Cb

- Delete-Gb

- Give-Voltage-LcfTo

- Give-Current-To

-Give-Powerlnfo.To

- Get-Power-Info-From

- Give-PositionTo

- Get Position Srom

" TRU Object Manager

- New-TRU

-Delete-TRU

- Give-VoltageJLcf-To

- Give-Current-To

- Give-PowerinfoTo

- Get-Power-Info-From

All the methods shown above, except the Delete-{object} method, were provided in the original

sequential simulation. The Delete-{object} method is required to delete objects that are instanti-

ated when the system aggregate packages are elaborated. The elaboration of objects by the system

69

aggregates will be described in more detail in the section on system aggregates. An exception for

handling NULL object pointers is also required for the object managers, and is exported by each

object manager.

.5...3 DC Power System, System Aggregate, and Connections. The DC Power System ex-

ports the single procedure. UpdateDC-PowerSystem. This procedure gates all the local and non-

local intra-system connections in the DC Power System by using the system-level connection gating

procedure. As was mentioned in Chapter III, the system connections are not implemented as sep-

arate packages. '[le system connections and their associated methods are contained within the

system packages, and are depicted in the system architecture diagram of Figure 9 as separate

packages for notational simplicity. Figure 15 follows the same method; and in making the design

changes for the parallel version of the system connections packages, the system cDnnections are still

cont tined within the system packages. Thus, the DC Power System Connections are contained in

the DC Power System package body.

The 110 system-level connections (connections 7 through 116) in the DC Power System

(DCPS) are defined in the DCPS body. A DCPS connection type ;s defined as having a source,

destination and a kind-of-data transferred. The kind-of-data is either voltage and LCF (VLCF) or

current (load) data. The DCPS connections type is still defined as an array, as was done in the

original DCPS pac :age design, but the array is no longer a constant ar:ay. This is done to allow

the node location variables for the connection point. to be set at initialization time.

Another change from th- sequential design is that a single procedure Gate is provided to

gate all the system-level c-..ne-tions. This is different from the design of the sequential simulation

where separate procedures are provided to gate VLCV, tie bus VLCF. current, and tie bus current

connections. The parallel design provides a single pr-rcedure that gates all local and non-local VLCF

and current connections using the gdJ, Z algorithm defined previously in Section 5.3. The single

Gate procedure is used instead of the original separate gating procedures because all connections

70

are logically equivalent in the new design, and a single procedure to gate all the connections is more

appropriate for this design.

The system aggregate packages define the type element-point that is the source and des-

tination type of a connection. Element points can be circuit breakers, TRUs, or buses, and each

element point has a node location. These node locations are initialized by the Initialize ode-

Locations method provided in the body of each system package. The DCPS body executes its

Initialize-NodeLocations method when the package is elaborated at execution time, is do the

Ai Power System and the Dummy System.2 The InitializeRodeLocations queries the DC

Power Systen Aggregate to determine the location of the element point sources and destinations.

Another method defined in the body of the DCPS is a method that creates a local connection

list array. This local connection list array is a subset of the connections enumerated in the DC

Power System Connections array. It is simply a list of the connection numbers for all the con-

nections that have a source or destination object located on a given node. Each node generates

its own connection list at the time the DCPS package is elaborated during execution using the

Create-Connection-List method. The CreateConnectionList procedure must execute after

the InitializeNodeLocations method is executed since it uses the node location information

maintained in the D('PS connections array.

The specification for the DCPS Aggregate (DCPSA) package for the parallel design is identical

with the specification used in the sequential version, except three changes. The first change is that

the element point type now has a node location associated with it. The second change is that

a location array for each type of object (Ch, THU
1

, and bus) is exported. These location arrays

contain the node locations of all objects in the DUPS. The last change is that a method is exported

for determining a given object's node location.

'The initialization pro(edure is called from within the execution section of the package when the package is loaded
into memory for -xecution by another package that withs the first package. This provides a way for "autom':ic"
intialization to be done by the wzthed package without the using (or wuih-ing) package having to make a call to the
initialization routine of the withed package.

71

The sequential version of the DCPSA only has a specification. In the parallel design a

DCPSA body is required for initializing the object node location information. The body of the

package receives information from the host program with the location information for all objects

in the simulation. The run-time initialization of object location information is (lone to allow easy

reconfigurability of the simulation, and the initialization of all the system aggregates is done at the

time the aggregate packages are elaborated.

5.4.4 AC Power System Aggregate. and Dummy System Aggregate. There are no AC Power

System or AC Power System Connections packages in the sequential simulation or the parallel simu-

lation; however, there is an AC Power System Aggregate (ACPSA) that names and instaritiates the

objects that are part of the ACPSA. The ACPSA specification is the same as the sequential version

except that node location information and a method for obtaining the node location information

are provided. This is similar to the design changes made in the DCPSA.

The Dummy System consists only of the Dummy System Aggregate (DSA) similar to the

ACPS. The DSA package for the parallel design has the same changes that the other system

aggregates have, i.e., node location information has been added the DSA element points and a

method is provided to determine the location of any object that is part of the DSA.

-5.4.5 Flight Executive. The flight executive package has the same design in the parallel and

sequential versions. It exports the procedure Update-Flight-Executive that updates all the flight

systems. The DESS only has one system that is fully simulated - the DC Power System. The AC

Power System and the Dummy System are "stubbed-out." The AC Power System is defined by the

AC Power System aggregate and the six AC buses that are the stubs for the AC Power System. The

Dummy System is stubbed as ten circuit breaker objects defined in the Dummy System Aggregate.

The objects for both these systems are initialized by the node simulation main program driver at,

the time the program starts execution. The sequential and parallel simulations contain the same

objects and are stubbed the same.

72

.5.4.6 Flight Executive Connechons. The Flight Executive Connections (FECs) are a sepa-

rat. package from the flight executive. The FECs package has a design similar to the DC Power

System Connections. The FECs are defined as an array of connection elements where each element

is t system point type. Each system point is defined by an element point type from one of the

three system aggregates. The node location information is maintained with the element points, and

when gaing a connection the Flight Executive Connection's Gate procedure queries the appropriate

system aggregate to get the node location for that system's object.

The FEC package exports two procedures for operating on the executive-level connections

defined in the FEC package. Process_.Cb.Linkages is a method provided for processing external

inputs for opening and closing circuit breakers. This method is also provided in the sequential

version of the simulation. Process -ExternalConnections_-ToDC-Power is the method called by

the Flight Executive to gate all the executive-level connections for the DC Power System.

There are 16 flight executive connections defined in the Flight Executive Connections package

specification. These connections are given different numberings than those given to the DC Power

System connections so that all connections within the simulation can be uniquely identified by

number. The FEC package body contains the Gate procedure for the executive-level connections.

The connection gating algorithm is identical with the one used in the DC Power System Connections

package, except that the connections gated are executive-level connections that have source and

destination objects from three different systems.

The FEC body also contains a routine to initialize the location information of the system

element points in the executive connection package. The node locations are initialized at elaboration

time when the simulation starts running.

5-4.7 Node Simulation Program Drvwr. Each node that the simulation is running on will

require a "main" procedure that calls other packages within the simulation and runs the simulation.

To make the simulation easily scalable only a single main procedure is defir'.d. This procedure

73

can run on any number of nodes, and uses the other packages defined above. The node main

procedure initializes the objects defined in the AC Power System Aggregate and the Dummy System

Aggregate, as is done in the sequential program. The procedure executes the number of iterations

of the simulation provided by the user from the host main program.

5.4.8 Host Simulation Program Driver. A main program resides on the host system of the

iPSC/2, and this program loads the main procedures for the iPSC/2 node processors. The main

program reads the object map data files that define the location of all the objects in the PDESS.

The host program sends this object map initialization data to each node, and sends the iteration

count to each node.

.5.5 Design Summary - Low-Level

The previous sub-sections described the low-level design of each package contained in the

DC Electrical System Simulation. The differences between the parallel low-level design and the

sequential low-level design were pointed out in the descriptions.

One thing that is apparent from the low-level design description is that most of the original

sequential design is reused in the parallel design. The major changes that are required for the

parallel version are adding K cation information to the system aggregates, and implementing a gat-

ing procedure for system-level and executive-level connections that can handle gating connections

between objects on separate processors. The management of objects on nodes is simplified by there

being only a single copy of an object on any processor. By using object maps provided by the

user in a data file, and having each system aggregate initialize (or instantiate) its objects on each

processor at run-time, the simulation can be easily scaled to various numbers of processors. This

scalability and easy reconfigurability will aid in testing the simulation performance for various con-

figurations of processors and object mappings. The next section addresses the performance issues

of the simulation based on the low-level design.

74

.5.6 Low-Level Performance Analysis

The design of the parallel version of the DESS (PDESS) is based on mapping one simulation

object to each node in the parallel simulation, and each processor gating the local and non-local

connections for the objects mapped to that processor. Each processor maintains a local topological

list of connections that it gates each iteration of the simulation and each processor gates its non-local

connections in the same relative, topological order to avoid dead-lock.

The goal of implementing the PDESS is to gain a speedup in the simulation execution time

compared with the DESS. The way that objects are mapped to processors can have a significant

effect on the potential speedup that can be achieved by the PDESS, and some heuristic for mapping

objects to processors must take into account the factors of load imbalance, communications overhead

and synchronization/processing-order dependencies mentioned in the concurrency analysis from

Chapter IV.

There are eight processors on the AFIT iPSC/2 Hypercube, and there are 53 objects in the

PDESS. If all possible mappings of objects to processors for one, two, four and eight processors are

considered 3 then the number of possible unique mappings of objects to processors is

153 +2 53 +4 53 8 853 ; 853 = 2159. (6)

This section presents an analysis ot the low-level design. The goal of the analysis is to derive

heuristics for selecting mappings that may achieve a speedup given thit there are a large number of

possible mappings of objects to processors for the PDESS (2'5 9 possible mappings for the PDESS

on AFIT's eight node iPSC/2 Hypercube). As mentioned before, there are three key factors that

affect the potential speedup that can be achieved by any given mapping of objects to processors in

the PDESS simulation.

3 A hypercube architecture is constructed such that the processors are allocated in powers of 2. Thus, in using a
hypercube, proicessors are allocated as 1. 2, 4, 8. 2' processors.

75

5.6.1 Load Imbalance. Connections are classified as local connections or non-local connec-

tions. Local connections have both their source and destination objects on the same processor,

but non-local connections have only the source object or the destination object for a connection.

Mapping objects to separate processors requires the transfer of state information between objects

on separate processors when non-local connections are gated.

Gating a local connection (LC) involves reading state information from the side of the source

object and applying that information to the side of the destination object. If the time that it takes

to read state information from the side of an object is equal to T.ct and the time that it takes to

apply state information to the side of an object is Tput, then the time to gate a local connection is

given by the equation:

T g teLC = Tget + Tput. (7)

Gating a non-local conicction on the processor that has the source for a non-local connection

involves reading the state N t 1:mation from the side of the source object and sending the state

information to the destination object. The time required to gate the non-local source connection

(N LSC) on the source object processor is the sum of Tgt and the time required to send the data,

"Fw . On the iPSC/2 Hypercube, Tend is simply the time it takes to post a non-blocking isend

or a blocking csend message. 4 The time to gate a NLSC is given by the equation:

TgateNLsC - Tgt + Tnd. (8)

Gating a non-local connection on a processor that has the destination object for the non-

local connection requires reading the state information sent by the source object processor and

4 An isend is an asynchronous, non-blocking send and a csend is a blocking send on the iPSC/2 Hypercube. For
small messages sizes the isend or csend behave similarly and their execution times are equivalent.

76

applying the information to the side of the destination object using a put_{attribute} operation.

Processing the non-local destination connection (NLDC) may involve time spent blocking for the

incoming message from the source object processor because the blocking, topological-list connection

processing method is used. 5 The time required to process a NLDC includes the time spent blocking

for the incoming message, Tblocking, plus the time to read the received message once it has arrived.

Treev, plus the time required to write the received data to the destination object, Tp,.. The time

to gate a NLDC is defined by the equation:

T9QteNLDC = Tblocki,, + Trec, + Tput. (9)

The total time spent by processor p gating connections for a single iteration of the simula-

tion, Tgaet,, for L local connections, S non-local source connections and D non-local destination

connections is defined by the equation:

T" eeP = L * TgatLc + S * TgatNLSC + D * T9a1CNLOC + Time spent blocking (10)

D

= L(T, + Tpuz) + S(Tgt + T,end) + D(Te,.v + Tp,) + TbIoMki, (11)
i=1

The execution time for the parallel simulation, T is equal to the maximum Tate, for the p pro-

cessors used in the simulation, and is defined equationally as:

T! = Max(Tg.t,, Tgate, . .. , Tgate,). (12)

Load balancing for the PDESS is achieved by having equal values of Tge, for each of the processors

used in the simulation. Tgae, for each processor can be made equal by mapping objects to processors

'See Chapter IV, Section 4.3 for a description of the topological-list method.

77

such that the values of L, S, and D are equal for each processor. The mapping of objects should

also be (lone to minimize the value of Tjate,; thus, minimizing the value of Te.

.5.6.2 (ionmmunications Overhead. The PDESS incurs an additional workload that the se-

quential simulation does not incur due to the overhead of communications between processors. This

communications overhead is due to the additional control logic in the parallel program necessary for

executing send and receive messages between processors, and the transmission delay time involved

in sending a message from one processor to another processor over the inter-processor communica-

tions link(s). The overhead introduced by these two factors increases the total execution time of

the parallel processors, and thus reduces the potential speedup of the parallel simulation.

Communications overhead is a function of T. Tecv and Tblocking. T,'end and Te,. are

essentially constant values for the iPSC/2 for a given message size, as shown by experiments

documented in [28]. Tblocking is a function of the number of NLDCs on a processor and when

messages are sent and received by NLSCs and NLDCs. If no non-local connections are present on a

processor, then Tbio~kin will be zero. Tblocking can be equal to zero if all the objects in the PDESS

simulation are mapped to single processor since all the objects within the PDESS are connected to

each other through various series of connections, or Tblocking can be equal to zero if the data for

each non-local connection is received prior to the non-local connection being gated.

T&Iockicng can be minimized by two methods. One method is to select a mapping of objects

to processors that has a minimum number of non-local connections. The second method is to

overlap communications between connections with connection computations. In the best situation

for minimizing communications overhead, all NLSCs would be gated at the start of an iteration of

the simulation, then all local connections would be gated, and lastly all NLDCs would be gated.

Using this method, the computation of local connections could be executing while the messages from

the NLSCs are being transferred between processors. If all the messages needed for the NLDCs

arrived before the local connections gating was completed, then when the NLDCs are gated all

78

the data for each NLDC would be available and no blocking would be necessary when gating tile

connections. For the PDESS, this ideal overlap of communications and computations is limited by

the fact that some LCs and NLSCs cannot be gated until some NLDCs have been gated. Therefore,

only a few of the NLSCs can be gated prior to having to process a NLDC - which may have to

block for incoming data to be received.

The amount of overlap that can be achieved in communications and computations is a factor

of the topologically-ordered list that is being used by each processor, and this topological list is

determined by how objects are mapped to processors. By selecting a mapping of objects that

requires the minimum number of non-local connections and that provides the maximum amount of

overlap in communications and computations, bltocking can be minimized and the potential speedup

will be greater.

5.6.3 Processing-Order Dependencies of Connections. Some operations for the PDESS must

be done sequentially due to the processing order dependencies of the connections in the simulation.

As shown in Chapter IV, Section 4.3, some connections must be gated before other connections can

be gated. Given n connections that must be executed in order from 1 to n where each connection

takes a single unit of time to gate, then gating one connection on each of n processors will require

n units of time due to the processing-order dependencies of the connections. If the n connections

can be processed in any order, then for n processors the gating of the connections could be done

in one time unit. The time required to gate the n sequentially-dependent connections is equal to

n units of time because the processor with connection n + 1 must wait until the processor with

connection n has gated its connection. Thus, for a single iteration of gating n connections that

must be processed in order, no speedup can be gained by using more than 1 processor. In fact,

gating the connections by more than one processor could be slo. r than using only one processor

due to communications overhead between processors.

79

The potential for an order n speedup is possible if more than one iteration of the gating of

the n connections is done using n processors and if there is no feedback between connections. This

speedup is possible due to a "pipeline-effect" that can be achieved by each processor gating its

connection every unit of time after the first time that its n - I predecessor connection is gated.

For example, if there are 3 connections to be gated on 3 processors for i iterations, then at time

T1 connection 1 is gated. Connection 1 and 2 are gated at time T2 , and connections 1, 2 and 3 are

gated at T3 . Iteration 1 is finished after connection 3 is gated at T3 , and iteration 2 is finished after

T4. Iteration i is finished after time T+a. For n connections gated by n processors for i iterations,

the speedup that can be achieved using the pipeline-effect is

S = n +i(13)

n if i > n. (14)

Thus, for a large number of iterations the speedup achievable can be of order n if the pipeline-effect

can be used in the gating of sequential connections.

The order n potential speedup using the pipeline-effect is not achievable in the PDESS simula-

tion due to the synchronization required between iterations of the simulation. The synchronization

between iterations is due to the nature of how messages are passed between objects within the

simulation. For every connection that is gated to send VLCF data from one object to another,

there is a complementary connection that sends current in the opposite direction. The n + 1 itera-

tion gating of a VLCF connection cannot be executed until the n iteration load/current connection

is gated. For example, if a message is sent from processor PI to processor P2 with the value of

VLCF from an object on P1, then a message will be sent back from P2 to P1 with the value of the

current from the object on P2 that received the VLCF from P1. At time T1 , P1 can gate its VLCF

connection to send VLCF data to P2. If the transfer time for sending VLCF data from P1 to P2

is considered as part of T1 , then at time T2 , P2 can gate its current connection to send current

80

data to P1. The VLCF connection of P1 cannot be gated at T, because P1 must wait until P2 has

gated its current connection before P1 can gate its VLCF connection for the second iteration. This

connection gating order is a due to the way the state of each object in the simulation is calculated.

If P1 gated its VLCF connection at T (the same time that P2 was gating its current connection)

then the objects on P1 and P2 would be in an inconsistent state at time Y:3. At time T, only P2

can gate its current connection and P1 must wait until T3 to gate it VLCF connection. Thus, the

pipeline-effect cannot be used to gain any increase in speedup for processing of serially dependent

connections during multiple iterations of the PDESS.

5.6.,; Mapping Heuristic. Load-balance, communications overhead, and serial execution of

connections are all factors that affect the potential speedup of the PDESS. The, mappings of objects

to processors that have the highest potential for speedup are mappings that:

" minimize load-imbalance,

* reduce communications overhead Ly overlapping communications and computations, and

" keep serially-dependent connections on the same processor.

Mappings of objects to processors are selected for testing by choosing mappings that generate

roughly equal numbers of local and non-local connections for each of the n processors used in each

test case. Also, the mappings are selected such that the topological-list for each processor provides

a good degree of overlap of communications and computations. This should reduce the value of

Tbocki,, for each processor and aid in gaining speedup. Lastly, mappings are chosen that do

not distribute serially- lependent connections between processors. Figures 16 through 23 show the

mappings that are tested to measure speedup in the next chapter.

81

*NodeO0

TRU I

48.86 51.99

$6.94 49 343 39 29

6 4 10.99 11.99
17,105 1100 '18.106 13,101 4,102 r15,103

CaI C1 3 CB 2 CB 22 CB 31 C B 32 CS3,3 CB3.4

71 70 69 76

* 47.65 46.84458

33 34 35 3 T3

DC I DC 2)C 3 D C5 D

--------------- ----- - ---- -------------

82

Node 0 R Iii

M.ia, 2

16, 104 569 99 4.92 18,106 93,91 52.90-----

* 10,98 11.99 a* 12.100 * 13,101 4.102 15.103

(131 '11.2 COR13 CB 2A CB CR.2 CB 3.1 CBR3 2 CSR3.3 CB 3A

71 TO709 T6

4T.85, a68 38

DC I 0C 2 .1 a 3 DC t4 DC5 DC 6 a

aoe:Nodel Node 1 ---------------
- - - - - -- - - - - - - - - - - - -

4.24 8161,80O 60,79 59.78

-411 2 .1 1 1

383

Node 0 Node I

0

,,1 11-4 10,98 "11.99 17.105 121100 "18A-1, 11101 4,102 1 5,103

"D I 1 1 I~11 1 3 (-B 1 (13 2 2 I-B 3 1 7B 3 2 CB1 3 3 CB1 3 4

71 70 *69 611 67 66
47.85 46,84 45.63

36 37 3

13" 1 r)c 2 DC(73 D3124 DCs 5 0DC6

30.108

19.10T4

2110 8R 43(9R DC5

Figure ~ ~ T 18 Mapn ftePES bet o oniuain23

44.81 43. 8 4 18

- - - -- - - - - - - - - - - -

Node 0

97 * 695

50.88 55.93
M~i Mi ~48.86 -1.82

MMain 3

56,94 4.- 5 9253,91 52.90

16,104 10.98 11.99 17.105 12.100 * 18,106 13,101 4,10- 15,1,3

CB1 B 1.2 GB 1.3
CB21 ~ . B 3.1 GB 3.2 CB 3.3 GB 3.4

7170 69 *68 67 X 66
47.89 46.84 * 45,83

3 X3 4 35 36 37 38

DC I DC 2 DC3 1.-- DC4 DGS 3 DC

--- L---------------------------

20.108

4,24 8161,80 60,79 59,78

r -- ------- - - - - - - - - - - - -.

Figure0 192apigo6tePE.1betsfrcnfgr4in2

CB 23111 B 85

Node 0 R~

96 95

7 , 9
50.88 55,93

ManMai 24 Man66 51.89

56.94~ 4987, . 53,91 52,90

16.104 10,98 11.99 17,lO5 12.100 "18,106 13,101 4.102 15,103

GB 1.1 CB 1.3 CSR1.3 * CB 21 CB 2.3 * B 3.1 G B 3.2 CB 3.3 CB 3A4

TI TO 69 68 67 66
47,85 46.84 45.83

333 536 37 38

DC 1 DC 2 DC DC 4 DC s DC 6

L ----------------------

.-- -- - - -- - - 20,108

9102119TRU 4 TRIJ 5 (T:iz6

10Node 1
8.---- ------ ------ ------ -----

Figure 8 204apn3oh81SSojcsfo ofgrain25

8611231

*NodeG0 Node I Node 2

TRUX 9
T 7 95

50,88 55.93
0 Mcin 49.86 $189

Xl~i -0 N.i 3

569 49,8T 54,92 53.91 52,90

, 16,,04 10,98 "11.99 * 1,105S 12.100 18,106 13.101 410 15,103

CS C11 C1.2 CB 1.3 CB C2.1 CBR2.2 CB 3I CSR3.2 CBR3.3 CR 3.4

71 70T 69 68 697 66
* 47,85 * 46,84 5 31

33 X 34 35 3 T3

*DC I DC 2 DC 3 DC 4 D3Cs DC 6

19,107921 TRU 4 ITRU 5 TRU 6

44.82 43,81 691.80 607 59 8

S4,1- 24 1

23.111 CR 527 7,115

DC T C* '.

T3Node33

Figre21.Mapin o th PES obecs fr onfguatin 30

- -- -- -- -- -- -- -- -- -- -- CB4. C 4287 .

NodeO0 Node 1 Node 2

TRU I

9T 1 96 95

* ~ 6 9

50.8a 55.93
46.66 Il~.3 51.89

56.94 498949 3.91 52.90

* 16.104 10.96 "11,99 IT1,109 12,100 * 18,106 13,101 4,102 15.103

CB12 C . 821 C . CB 3.1 CB 3.2 CB 3-3 CB 3.4

71 70 *69 *66 67 66
47,85 * 46,84 * 45.83

34 *36 37 3

*DC I DC 2 VC 3 DC4 DC 3 DC 6

--- -------

-40.108

1917TRU 4 TRU 5 TRU 6TS 1 1010

61,8 6 NT9 d9e3
Figure 8 224apn3oh81SSojcsfo ofgrain42

88.1

NodeO0 Node 1Node 2

TRUIU

97 96

50.66 54,25.93 "?

10;,98 - 19 - - --- 17,012,100 I13,101 4,102 15S,103

CSR11 C1.2 CBR1.3 CBR2.1 CB 21

TI T170 69 fig 6 67 66

17,I
X 346

-------- N de4eod

Figue 3. Mapin of th -DS obet fo cofgrto -8v1. --------- ---------

--- -- -- ---- -- -- 1 8 9

V[. Performance Results of the Parallel OOD Simulation

6.1 Introduction

The first section of this chapter describes how the parallel simulation was validated to make

sure that it generates the same results as the sequential simulation. The next section describes the

procedures used for testing, and in the last section the performance testing results for the Paral!

DC Electrical System Simulation (PDESS) are presented.

6.2 Validation of Results

The PDESS was tested to determine whether it generated the same outputs as the sequential

simulation. To validate the results, the sequential simulation was run for 1, 2, 5, 10, 100 and 1000

iterations. The state of all the objects in the simulation was printed to a file at the end of each of

these simulation runs, and these files were sorted based on the first field in the files, which was the

object name.

The PDESS was run for 1, 2, 5, 10, 100 and 1000 iterations on one, two, four, and eight

processors. The state of the objects on each node was sent to a file at the end of each of these runs.

The state information output from the PDESS was in the same format as the sequential version

to aid in comparing the parallel and sequential outputs. The parallel outputs were sorted in the

same manner as the sequential files, and then the same iteration output files for the sequential and

parallel simulations were compared.

In the first series of tests, the outputs of the PDESS and the sequential simulation were

different. This difference was traced back to an improper handling of tie buses connection gating.

This error was corrected, and the parallel simulation was run again. The outputs were compared

again, and the state of all the objects in the simulation was identical for all runs of the parallel and

sequential simulations. Various mappings of objects to processors were tested, and the results of the

90

tests yielded the same states for all configurations. Thus, the parallel simulation was empirically

validated and shown to generate the same results as tile sequential version of the simulation.

6.3 Performance Tests

6.3.1 Speedup Calculations. The speedup of the PDESS is measured by comparing the best

execution time for n iterations of the sequential simulation against the best execution time for n

iterations of the parallel simulation. The formula for speedup, S, is calculated by the equation,

Best time for n iterations of sequential program

Best time for n iterations of parallel program

Initialization time is not included as part of the execution time for each of the simulations

since the PDESS has a high initialization overhead due to its reconfigurability feature. The recon-

figurability feature is built into the initialization of the simulation to allow rapid testing of different

configurations of processors and object mappings. As described in Chapter V, the host program

reads a configuration file that identifies where each simulation object is mapped, and this mapping

information is sent to each node. This initialization overhead can be reduced by setting the node

location variables in each system aggregate to a fixed location and removing the initialization rou-

tines from the host program. This will speed up initialization, but will make reconfiguration of the

simulation a tedious task that requires recompiling the system ag';regates for each change in the

configuration. Therefore, the PDESS initialization is not compared with the sequential initializa-

tion time in calculating speedup since the PDESS initialization procedures are not optimized for

speed of execution.

The execution time for the parallel simulation is determined by having each processor report

the total execution time for the total number of iterations. The number of iterations that the

simulation is to run is an input parameter provided by the host to the nodes. Each node runs the

same number of iterations of the simulation. The total execution time for the parallel simulation is

91

the longest execution time of any of the processors, since all the processors start execution at the

same time.

6.4 Timing Test Procedures

The execution times were measured using the node operating system clock function mclock

a clock function with 1 millisecond resolution [26]. The mclock function was called at, the beginning

of a series of iterations (aftr all initialization of the nodes was completed) to get time Tta, on

each node. After all the iterations were completed on each node the mclock function was called

again to get a value for time Tinih. The execution time for each node was calculated as,

Te -: Tinish - Tstart where p is the processor number. (16)

The execution time of the parallel simulation is equal to the maximum execution time of of all

the processors. The execution times of the simulation have an error of ± 1 millisecond due to the

resolution of the clock and the way the execution time is calculated based on two readings of the

mclock.

All the timings reported were done with no other processes running ol any of the unused

nodes of the hypercube, e.g., for the two node test runs only two of the nodes were used for the

testing, but the other 6 nodes were left running idle. This was done to eliminate increases in

execution time that were seen in timing results that were run when other processes shared the

hypercube. When the hypercube was dedicated to running only the test programs, the variability

of timings was less than two percent between runs.

The amount of time spent in blocking during the execution of the crecv operations was

measured for each node also. This was done to get an idea of the values of Tbhocking for each

configuration tested. The amount of time spent blocking by each node was measured by using

the mclock function before and after each crecv operation used when gating a connection. The

92

Table 5. AC Power System Object to Processor Mappings
Configuration lvI 2vI 2v2 2v3 2v4 2v5 -IvI 4v2 Svl
Total No. of Processors 1 2 2 2 2 2 4 4 8
AC Bus 1 0 0 0 0 0 0 0 0 0
AC Bus 2 0 0 0 1 1 1 1 1 1
AC Bus 3 0 0 0 1 0 0 2 2 2
AC Bus 4 0 1 0 0 1 1 3 1 6
AC Bus 5 0 1 0 0 1 1 3 1 6
AC Bus 6 0 1 0 0 1 1 3 1 6

Table 6. Dummy System Object to Processor Mappings
Configuration Iv1 2v1 2v2 2v3 12v4 2v5 4vl 4v2 8vl

Total No. of Processors 1 2 2 2 2 2 4 4 8
Dummy Cb 1 0 0 1 0 0 0 0 0 3
Dummy Cb 2 0 0 1 0 0 0 0 0 3
Dummy Cb 3 0 0 1 1 1 1 1 1 4
Dummy Cb 4 0 0 1 1 0 0 2 2 4
Dummy Cb 5 0 0 1 1 0 0 2 2 5
Dummy Cb 6 0 0 1 1 0 0 2 .2 5
Dummy Cb 7 0 0 0 0 0 1 1 0 0
Dummy Cb 8 0 1 0 0 1 1 3 3 7
Dummy Cb 9 0 1 0 0 1 1 3 3 7
Dummy Cb 10 1 0 1 0 0 1J1 3 3 7]

aiuc repofred! tut, 'blocking on1 eacit node was tinc cumulative time spent blocking for all the crecv

operations. If the message that the crecv was called to read was available on the processor, then the

time measured for executing the crecv function was less than the resolution of the mclock function,

and the reported blocking time for that connection was zero. However, if tile crecv function

blocked for one millisecond or more then the blocking time for that connection was measured with

an accuracy of ± 1 msec. Due to the resolution of the clocking function and the way that the

blocking time was accumulated, the accuracy of the total time reported for Tblockig for a node

is equal to ±(i * D) msecs, where i is the number of iterations and D is the number of non-local

destination connections. Thus, the values reported for Tblocking are good estimates, but may have

a wide variability due to the resolution of the clock, and the way that Tblocking is calculated. The

values should still give an indication of the magnitude of the time spent blocking by each processor.

93

6.5 Titrng Test Resits

[hc tirst series of tirimng tests were onducted with 2. - and 8 processors. Each of the DC

Power S,tem o bj!ect ,oitiguratiois shown in Figures 16 through 23 was tested, and the AC Power

System and Dummy Sy:-tem objet:,ts were iiapped as shown in Tables 5 and 6. The tables show

that the AC Power Syste-n and the Dummy System objects are mapped to the same processor that

their executive-level connection destination objects from the DC Power System are mapped. Thus.

all executive-level connections are local connections for all tested configurations.1 rhe execution

time for each of the n processors was measured for 1. 2, 5 10. 50. 100. 250, 500 and 1000 iterations

for each of the mapping configrat ions.

The speedups mea.sured for the first series of timing tests are shown by the two graphs in

Figure 24. Both graphs indicate that the speedup for all the configurations decreases with the

number of iterations run. There is a significant decrease in the speedup of all configurations of the

simulation in going from one to 100 iterations. The speedup stays approximately the same in going

100 to 1000 iterations. All the 2 node configurations show a slowdown for five or more iterations.

Only the four node configuration -1vl shows a speedup after 10 iterations, but the speedup for -1vI
goes from 1.3 to less than 1.15. This speedup is a very small increase in performance given that

four processors are being used, and the slowdown for all the other configurations tested is obviously

not an encouraging result.

Additional testing is necessary to determine the reason that the speedup decreases with the

number of iterations of the simulation, and to determine what factors cause the slowdown for all the

configurations except 4vl - which only has a small speedup. In order to measure the maximum

speedup that can be achieved by any of the given object mapping configurations, a series of timing

'The executive-level connections package can support non-local connections gating in the same manner that the

r-stem-level connection' package does, but inefficient mappings of objects to processors would be generated if the
objects from the AC Power System and the Dummy System are mapped to processors such that non-local executive
connections are required. This condition is due to the AC Power System and the Dummy System being "stubbed-
out." A simulation with a complete AC Power System and a Dummy System may introduce non-local executive-level
connections.

94

Speedup vs. Number of Iterations
1 and 2 Node Mappings

lvi

201

2\2

.8

2v4

2V5

0.5

1 10100 1000
Number of fteratons

Speedup vs. Number of Iterations
4 and 8 Node Mappngs

1.4
40-

av1

Number of htterbom~

(b)

Figure 24. Measured Speedups of (a) I and 2 Node Object Mappings, (b) 4 and 8 Node Object
Mappings.

tests is run with a modified xersion of the PDESS. -Fe)C Power System package body of th'

iiitied l[) ESS is changed so that all the NLSCs are gated first, then the local connections ar'

gutl. :n1l la.stly the NL DC's are gated. This method of gating the connections on each procss,,r

r,iilts iII the IuaxiIuIuni level of overlap of communications and computations. andt intdicates the

lhigl,'st '.vel of speedup that is possible with a given mapping of objects to processors. The actual

.tates of the objects generated using this modified version of the PDESS is not the sanie as th,

sequentiat simulation since the conne'-t ioT g+;ng dependencies are not. handled correctly when the

,nn,ections are gated in this niodified manner. However, this method of gating the co netotis

g.ives an upper bound to tile speedup that can be achieved by a particular mapping,, of ol jct

l rocessors using the PMESS.

Figure 25 shows the speedup obtained by using the modified PDESS. F'igure 25(a) shows the

specdup for all the two node configurations using the modified PDESS, and Figure 25(b) shows the

speedup for the four node and the eight node configurations. For each of the configurations (except

configuration 2v2), the speedups for one and two iterations are greater than the unmodified PDESS

spvedups: but as the iterations increase toward 1000 iterations the speedups of the modified and

the unmodified PDESS are almost identical. For the 2v2 configuration, the unmodified PDESS

speedup is equal to the modified PDESS speedup - which is actually a slowdown. Both 2v2

configurations show the poorest performance of all the configurations.

The modified PDESS simulation speedups decrease with an increase in the number of itera-

tions similar to the decrease seen in the unmodified version of the PDESS. For a small number of

iterations, a much higher speedup is measured than when the number of iterations goes beyond 5

o)r 10 iterations. This decrpas,- in the speedup for both the unmodified and the modified PDESS is

an interesting phenomenon, and the next section addresses the cause of this phenomenon.

6.5. 1 Variable T,,t Times. Some measurements were done to determine the relative time

involved in gating a connection. It was found that a large segment of the time involved in processing

96

Max. Speedup vs. Number of Iterations
1 and 2 Node Mappings

1.5

..... .. 2vl-O(PT

2V4-OPT

25............

..

~Nc.mcl :. fr~n

(b)

Figre25Maxmu Speedu of (a) 2 Nd n (.:b)e of ande8Nodeobjcn Mpins

2,57

a connection is reading the state of a connection. This is a large part of the time of gating a iocal

connection (LC) and a NLSC because the new state of an object is calculated when the object's

state is read by using the GetPower.InfoFrom method. The Get.PowerInfoFrom method is

the first operation done when gating a LC or an NLSC. As was noted in Chapter III, the state

of an object can be computed when an object receives inputs on a side or when the state of the

object is read. This is a design choice; the paradigm does not define when the state should be

calculated. The sequential simulation calculates the new state when the Get-PowerInfoFrom

method is applied to an object. Since the PDESS uses the object-manager design from the original

sequential simulation, new states of objects in the PDESS are also calculated when the state of an

object is read using the GetPowerInfoFrom method.

Calculating the new values of voltage-LCF, and current that are required when the Get_-

Power_!nfoFrom method is applied to a bus object involves time consuming floating point operations. 2

The number of floating point calculations done for a bus object has an order of magnitude propor-

tional to the number of bus connections, e.g., Get.PowerInf oFrom has O(n) where n is the number

of bus connections. The time that it takes to execute the GetPower.Info.From method on a bus is

also affected by whether the values applied to the side of the bus are different from the current val-

ues of voltage and LCF, or current. If the values applied to the side of a bus by a Give_{attribute}

method are the same as the previously applied values, then when the GetPower_.Info-From method

is executed, the floating point calculations are not executed since the side inputs have not changed.

This makes the execution time of the GetPower._Info.From method variable; thus, Tgt for buses

varies. The execution time of gating a connection can vary significantly based on whether the state

of the inputs to the side of a bus are changed or not. From measurements done on bus objects,

the amount of time that it takes to execute the Get-Power..Info Yrom method on a bus can vary

2 Floating point operations typically take significantly longer than integer operations for most microprocessor

architectures. Even with the 80387 math coprocessor that the iPSC/2 uses for floating point operations for Ada,
floating point operations are very time consuming. See [28] for some performance measurements for the iPSC/2
floating point operations.

98

from 5 milliseconds to less than 1 millisecond for a five-connection bus - the size of the largest

buses in the PDESS. This variable Tgt time for buses and TRUs can cause a significant change

in the computational workload from one iteration to the next in the PDESS and the sequential

simulation.

The simulated circuit in the PDESS reaches a steady state condition after two or three

iterations of the simulation. This steady state condition of the PDESS circuit is reached when

the states of all the objects reach a point of equilibrium. At this point the voltages, LCF, and

current do not change for subsequent iterations of the simulation. When objects that provide

state information to a bus object reach a steady state condition, the bus objects do not execute

their floating point calculations, and for a five connection bus the time that it takes to execute the

Get-PowerInloFrom method decreases from five msecs to less than one msec. The value of Tg, for

buses decreases once a steady state condition is reached, and the amount of time that each processor

spends doing computations decreases. The time that it takes to send messages between objects on

separate processors, however, stays the same. Thus, there is a change in the ratio of computations

versus communications. The ratio decreases when steady state conditions are reached.

Figures 26 shows the time per iteration (TPI) for the sequential simulation and the various

parallel configurations. The times per iteration are based on timings of the unmodified PDESS.

As can be seen in the figure, all the configurations except lvI and 2v2 have TPIs less than the

sequential version for one and two iterations. At 10 iterations, all the configurations except 4vl

have TPIs greater than or equal to the sequential TPI. Because the TPI of the sequential simulation

decreases below that of the parallel configurations, the speedups for the parallel simulations become

slowdowns.3 All the TPIs show a significant decrease as the number of iterations increase, and this

decrease is due to the reduced Tgt times for the buses.

3 A slowdown is indicated by a speedup value S of less than one.

99

Time/Iteration vs. Number of Iterations
Sequential, 1 and 2 Node Configurations

4 5

40 Sq

lVl

201

S25 2v2
.... . 2

......... 2v4

10

(a)

Time/Iteration vs Number:it. o Iterations
2, 4 and 8NoeCngrton

3. 2v

4V2

S~ u80

E -M

1 10 000

(b)

Figure 26. Time per Iteration for Various Object Mappings.

100

The parallel and the sequential simulations reach steady state conditions after the same

number of iterations. The sequential simulation shows a decrease in TPI proportional to the

decrease in T,,t for buses, and a reduction in the value of Tget results in a decrease in the value

of Tgae. TPI is defined as the total execution time of the simulation divided by the total number

of iterations. If Tat, is reduced by r percent due to steady state being reached, and steady state

is reached on the second iteration of the simulation (if no new inputs are applied to the objects in

the simulation after the first iteration) then for the sequential simulation, TPIseq can be defined

by the equation:

TPIseq =i - (17)

where tgat, is the time that it takes to gate all the connections for the first iteration, and i is

the number of iterations. For only one iteration TPIeq = tgatel, but for subsequent iterations

TPIsq < tgasel. If tgati is reduced from 35 msecs to 10 msecs due to steady state being reached

after the first iteration, then plotting the equation of TPIeq verses the number of iterations yields

the plot shown in Figure 27, where r = = 3.5. The curve of Figure 27 has the same shape as

those shown in Figure 26. There is a sharp decrease in TPI initially, then the curve reaches an

asymptotic limit at at around 100 iterations - where TPI is approximately equal to 10 msecs.

The parallel simulation will have a similar decrease in computations on each processor due

to Tgt decreasing. However, the amount of time spent on communications and the overhead of

the logic required by the parallel implementation for gating of local and non-local connections will

remain the same, even though Tt decreases. The time spent gating connections for the parallel

simulation will be some fraction of the sequential simulation's connection gating time because only

a fraction of the sequential simulation's connections will be gated on each of the parallel processor

nodes. Ideally, the time spent just in computations associated with gating connections on the

parallel processor nodes will be equal to the amount of time the sequential simulation spends

10L

Time/Iter. vs. Number of Iteratons
Calculated and Measured Values

35

30

!2 25 ;'"*"**''.""" **.*

.........

0

.J ii~ iiii !! ii ii~i...................

1001bo
Numbeof ~flotons

Figure 27. Calculated Time Per Iteration for the Sequential Simulation.

gating connections divided by the number of processors used in the parallel simulation. The time

that the sequential simulation spends gating connections as derived from equation 17 is:

Tgateoeq =tgatei + (i - 1) (t aei) (18)

and the amount of time that the parallel simulation spends in just the computations associated

with the gating of connections is equal to:

lTqte,., - (19)
P

tgate, + (i - 1)()
= (20)

p

if the workload from the sequential simulation is divided equally among the p processors of the

parallel simulation.

102

The parallel simulation will spend a part of its total execution time for communications and

the overhead associated with extra logic of the parallel simulation. If the time that the parallel

simulation spends in communications associated with the gating of non-local connections is equal

to Tco,m and the amount of overhead due to the extra logic of the parallel simulation is equal to

Toverhead; then, the time per iteration of the parallel simulation is defined by the equation:

TPIpar = Tgate,. + Tcovnm + Toverhead (21)

tqo~,(z1)'~,~ ~+ Tcomm + Toverhead
p (22)

The value for Toverhead can be estimated by subtracting the execution time of the PDESS on a

single node from the execution time for the sequential simulation. If the value of Tcomm can be

expressed as a percentage of i * tgate and p is equal to 2, then TPIpar can be plotted against the

number of iterations to yield a curve as shown in Figure 28.

Each of the curves in Figure 28 marked "Par. X%" indicates the calculated values for

TPIpar where Tcomm = X%(i * tgatel). As can be seen by the curves, the value of Tcommn has a

significant impact on the shape of the curve. Some values of Tcomm show a speedup for a small

number of iterations; but as the number of iterations increases, the sequential TPI becomes less

than the parallel TPIs. This is the same trend seen in the measured TPI values for the two node

configurations of the PDESS shown in Figure 26. TPIpar can only remain less than TPIeq if the

value of Tgate . meets the following criteria:

Tga,... < Tgate.., - (Tomm + Toerhead) (23)

From the measured speedup results shown in Figure 28 it appears that configuration 4vl is the only

configuration for which this relation holds true over the range of one to 1000 iterations. Thus, 4vl

is the only configuration that maintains a speedup up to 1000 iterations. For all the other tested

103

Time/Iter. vs. Number of Iterations
Example Calculated Values.

Sequenual

30Par- 10% Com.

~ 25Par, 25% Comm

20.. Par. 7!91 Conm

:. : i : - : : : : : : : : : : ; . : : : : : - :

Figure 28. Calculated Time per Iteration for Parallel Simulations.

configurations, Tgate,., does not maintain the relation shown in Equation 23, and thus they show

a slowdown as the number of iterations increases.

The measured speedups oL the PDESS show significant decreases due to the decreases in time

per iteration of the simulation. The decrease in TPIs is due to the decrease in Tget of buses, which

results in a decrease in Tgate. The decrease in Tet is due to a steady state being reached by all

of the voltage, LCF and current values of the objects and the computational load of simulation

tasks changing. Obviously, if the PDESS simulation is going to stay in a steady state condition

for several iterations, then the parallel simulation will not show any significant speedup over the

sequential version of the simulation. In fact, if the simulation stays in a steady state for long periods

of time (50 to 100 iterations or more) then the simulation would probably be bettei htudied using

a discrete-event simulation. A discrete-event simulation can model the state of the DC Electrical

System at the first iteration and then schedule an event to calculate the state of the system at a

104

time equal to the time that the 50th or 100th will occur. This avoids having to calculate all the

states between the first and 50th or 100th iterations.

Lee, Rissman et al. state that, "Flight simulators are not event-driven. Interaction be-

tween systems in the real aircraft are continuous. Simulators model those interactions in discrete

time" [30:4].' Thus, the state of the simulation only changing every 50 to 100 iteraions may

not be a realistic case for a real-time, man-in-the-loop, flight training simulator. The state of the

simulation should likely change every couple of iterations due to some input such as a fluctuation

of the AC Power System voltages due to changes in engine RPM, etc.. These changes in the AC

i'ower System will feed into the DC Power System and the state of the DC Power System objects

will change accordingly. Changes in object states every iteration or two of the simulation could

be expected, and in this case the speedup measures done above indicate the worst case situation.

In order to get an idea of the potential speedup that can be achieved if the state of the simulated

objects changes every iteration of the simulation, a special series of tests are done. The next section

describes these tests and their results.

6.6 Fixed T.,t Speedup Measurements

The GetPower_.rom method of the bus object manager was modified so that the value of Tet

for bus objects stays the same from one iteration to the next. 5 As stated in Section 6.5.1, the value

of Tget for buses can vary depending on the inputs received on the side of a bus. If the inputs on

the side of a bus do not change between consecutive applications of the GetPowerFrom method,

then the floating point calculations for the LCF and current values of the bus are not executed

when the state of the bus is read. The GetPowerFrom method for the bus objects was modified

so that the floating point calculations are always executed. This will keep the value of Tget roughly

4 There may be some who would disagree with this view, but since this research is based on the work of Lee,
Rissman et al. the point is not argued here.

'Al methods are applied to bus objects using the methods provided by the Bus-_0bjecti-anager package. There-
fore, modifications to methods for bus objects are done in the Bus Object Manager package. See Chapter III,
Section 3.5 for a description of the object manager packages.

105

the same from one iteration of the simulation to the next even when steady state conditions are

reached by the objects in the PDESS.

The speedup of the configurations shown in Figures 16 through 23 and Tables 5 and 6 were

measured using the modified bus object manager, and the measured speedups are shown in the

graphs in Figure 29. Figure 29(a) shows the speedup for the two node configurations, and Fig-

ure 29(b) shows the speedup for the four and eight node configurations.

All the configurations in Figure 29, except Ivi and 2v2, show a slight increase in speedup as

the number of iterations goes from one to 10, and the speedups level off after 10 iterations. None

of the speedup curves for the modified bus object manager show the same decrease seen in the

original timings using the unmodified bus object manager with the variable Tget times.

Figure 30 shows how the speedup of the PDESS with the modified bus object manager

and the speedup of the PDESS with the original bus object manager compare. The measured

speedup at 1000 iterations for each configuration (lv1 through 8vl) is shown along the y-axis and

the configurations are along the x-axis. The two node configurations are shown first on the x-

axis in order of increasing speedup. Configuration 2v1 has the highest speedup of the two node

configurations. The four node configurations are shown in order of increasing speedup after the two

node configurations, and the eight node configuration is shown after the four node configurations.

Figure 30 shows that each configuration has a higher measured speedup at 1000 iterations

when the modified'bus object manager with the fixed Tt time is used. The curve for the modified

bus object manager (MBOM) configurations shows that configuration 4vl has the highest speedup

(it also has the highest speedup using the unmodified bus object manager (UBOM) with variable

Tgt time). The eight node configuration 8vl has the second highest speedup of the MBOM curve,

and configuration 4v2 is the next highest. All the two node MBOM configurations except 2v2

show approximately the same speedup. Configuration 2v2 has the smallest speedup (actually a

slowdown) of all the configurations for the UBOM and the MBOM. Configuration 2v2 is the only

106

Speedup vs. Number of Iterations
Mod. Bus Object Manager -I & 2 Nodes

..
S.. :

................................. 2v

.............. ... 00.................s

Speed~...up vs Nu broV1eain.Mod~~~~~ ..~bec .ang..... 8Nd
.. ..2

...........-

. 4.

.....

...

.. v

(bA,

Figure... 29... Tieprieainfrvrosojc.apig sn oiidbsojc aae
with. fie

G .7
1 0.

configuration that shows a slowdown for the MBOM configurations. The UBOM curve shows

configuration 4vI is the only configuration that has a speedup at 1000 iterations. All the other

configurations show a slowdown.

Speedup for Each Configuration
Moified Bus and Std. Bus at 1000 Iter.

................
0.7

242 ~ 2' v 2VI v v v
Contigfaimo

-- Mod. Bus 04 . - W-Sd. Bus Ot- Mg.~

Figure 30. Measured speedup at 1000 iterations using the standard bus object manager and
modified bus object manager.

6. 7 Performance Results Summary

The speedup of the PDESS using the original unmodified bus object manager shows a decrease

in speedup for all tested configurations as the number of iterations of the simulation is increased

from one to 1000 iterations. The decrease in speedup is due to the time- per- iterat ion of the

sequential version of the simulation decreasing to a lower value than the time-per-iteration of the

parallel version.

The decrease in TPI of the sequential and the parallel simulation is caused by a decrease

in ,gt for connections involving bus objects. When the objects that provide inputs to the bus

108

objects reach a steady-state condition where their state outputs are not changing, the computations

associated with executing a read on a bus object are significantly reduced. Therefore, Tet of tht,

bus decreases, and 7,,, of the processor decreases.

The bus object manager was modified such that Tet for the buses is constant. This modified

version of the object manager shows the potential speedup achievable if the objects in the simulation

change state every iteration or two. The measured speedups using the modified bus object manager

do not show the decrease in speedup seen when the bus object managers with variable 7,t time,

are used. The next chapter presents an analysis of the measured results and builds a model for

explaining these results.

109

VII. Results Analysis of tht Paralel OOD Simulation

/.1 Introduction

This chapter presents an analysis of the Parallel DC Electrical System Simulation (P1DESS)

for the various configurations that were tested in Chapter VI. The analysis is based ou using time-

line graphs and PERT (Performance ard Evaluation Review Technique) networks to determine the

execution time of each processor. This method of analysis allows the effects of load balancing,

communications overhead and processing-order dependencies to be quantified and equations that

define the behavior of the simulations to be derived. This analysis method is first presented by

doing an anlysis of the modified bus object manager version of configuration 2vl.

7.1.1 Analysis of Configuration 2v1. Each processor in the PDESS gates a series of connec-

tions based on the objects that are mapped to that processor. 1 Figure 31 shows how the objects

from the PDESS are mapped to each of the two procvssors used to run configuration 2vI. This

mapping of objects to processors yields 82 local connections (10 executive-level and 72 system-level

connections), 2 NLSCs and 2 NLDCs for node 0. Node 1 has 410 LCs (six executive-level and 3-1

system-level connections), 2 NLSCs and 2 NLDCs for node 1. Since only two processors are used

for configuration 2vl, the NLSCs on node 0 are the NLDCs on node 1, and the NLSCs on node 1

are the NLDCs on node 0. The NLSCs on node 0 (thus, the NLDCs on node 1) are connections 23

and Ill. The NLDCs on node 0 (thus, the NLSCs on node 1) are connectiui, 43 and 81.

Node 0, for the 2vl configuration, gates its connections in the following manner for each

iteration of the simulation:

1. Gate all executive-level connections - which are all local connections.

2. Gate local connections 7 through 20.

'Chapter V describes in detail how the connections are gated.

110

r~~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ --- - - - - - - - - -- - - - - - - - - - - - -- -

Node 0
TRU L C

50.88 tli 59 88 18
M~in Mn

49 54,912
*56,94 4 49 39 29

16.104 10,98 11,99 17.1.05 12,100 "18,106 13 0t 4 025, 3

* C I CS 1.2 CS 1.3 CS 2.1 CS 2.2 CB 3.1 CB 3.2 CB 3.3 CS 3.4

TI X70 69 6 T 6
* 47.85 46,8445 3

33 34 3596373

DCI DC 2 DC3 D4 C5 D

I-------------------------------

19172,0 TRU 4 TRS TRU 6

T~B

r-- ------------- ---- --- ---

39 28111

3. Gate connection 21, the first NLSC on node 0. This will send voltage and LCF data to node
1 so that node I can gate NLDC 21.

4. Gate local connections 33 through 39.

5. Gate connection 43, the first NLDC on node 0. If node 1 has not gated its first NLSC,
connection 43, prior to the time that node 0 attempts to gate NLDC 43, then node 0 will
block its connection gating until the data from node l's NLSC 43 is received. The data sent
from node 1 to node 0 is voltage and LCF data. The gating of NLDC 43 is completed by
node 0 when the data from node 1 is received, read from the receive buffer and applied to the
side of the Tie Bus 1.

6. After the gating of connection 43 is completed, gate local connections 44 through 56 and 65
through 71.

7. Gate NLDC 81, and block if the data from NLSC 81 on node I has not been received yet.
Once the load/current data from NLSC 81 on node 1 is received, then complete the gating of
NLDC 81.

8. Gate local connections 81 through 110.

9. Gate NLSC 111 and send load/current data to node 1.

10. Start the next iteration of the simulation by gating the executive-level connections again and
repeating the connection gating steps described above.

Node I gates its connections in the same manner as node 0, but the connections that node

1 gates are the connections associated with the objects mapped to it. Node 1 will start the first

iteration by gating NLDC 23 and blocking until the data sent from node O's NLSC 23 is received.

Local connections are then gated until NLSC 43 is gated, and then more local connections are gated

until NLSC 81 is gated. After NLSC 81 is gated, NLDC 111 is gated, and the gating of NLDC

111 will be blocked until data is received from node O's NLSC 111. After this data is received by

node 1, then NLDC 111 finishes gating, and local connections 112 through 116 are gated. This

completes the first iteration of the PDESS on node 1, and each iteration of the PDESS on node 1

will repeat these connection gating steps.

Figure 32 uses a time-line graph to show the connection gating described above. The arrows

between time-lines indicate data being transferred from one node to another due to the gating

of a NLSC. The time required to gate each series of local connections is shown in the graph, and

these times were derived from measurements done using a modified version of the DCPowerSystem

package body and the modified bus object manager with fixed Tgt time.

112

Exe.. Conn.
Con. 33.39

I Con ICOw, Cor,7..23 43...56.65...71 81 . 1

Exec. ,Con Conn. Corn. Corm.

Corm. :23 43 81

Nd1:HCoral Conn. Conn
23...32,40.43 57_6472..81 !11...116

Ech Division - I msev.

Figure 32. Configurat;on 2vl connection gating time-line.

The DCPower-System package body was modified to report the value of mclock when the

PDESS starts an iteration of the simulation, ends an iteration and when a NLSC or a NLDC

connection is gated. The blocking crecvs, that are used when an NLDC is gated, were removed

from the DCPower.System package so that the node processors do not block for incoming messages.

Thus, the time modified DCPower.System package only measures the time spent gating connections,

and not the time spent blocking. This method of measuring the gating times is used since the time

spent blocking by each processor can be calculated using only the gating times and the connection

processing order information, and these times are the only times needed for doing the PERT

analysis.

Figure 32 shows that node 0 takes 8 msecs to gate its executive-level connections, LCs 7

through 22, and NLSC 23. After NLSC 23 is gated, node 0 takes 1 msec. to gate LCs 33 through

39. Node 1 gates its executive-level connections in 1 msec. and then attempts to gate NLDC 23.

Node 1 cannot complete the gating of NLDC 23 until the data from node 0 is received from NLSC

23 being gated. Thus, node I waits for 7 msecs (8 - 1 msecs) plus the time that it takes to transfer

the voltage-LCF data from node 0 to node 1 for connection 23. The voltage-LCF data sent by

NLSC 23 is a ten byte message, and from the measurements done on the iPSC/2 [ypercube it

113

takes approximately 0.5 msecs to transfer a message of this size.2 (Current/load messages are eight

byte messages and take approximately 0.4 msecs to transfer between nodes.) Therefore, node 1

completes the gating of NLDC 23 after waiting for 7.5 msecs.

Node O's NLDC 43 is gated after LC 33 through 39 are gated, but NLDC 43 cannot complete

gating until node l's NLSC 43 is gated and the data received by node 0. Node 1 gates NLSC 43

five msecs after NLDC 23 is gated, so node 0 completes the gating of NLDC 43 after waiting for

4.5 msecs. 3 Once node 0 finishes gating NLDC 43, 6 msecs are used to gate LCs 43 through 56

and 65 through 71. Node 0 will then block when NLDC 81 is gated. Since node 1 takes 8 msecs to

gate LCs 57 through 80, and NLSC 81, then node 0 waits for the time that it takes node I to gate

these connections plus the time that it takes to transfer the load/current data from node 1 to node

0. As mentioned above, the time that it takes to transfer load/current data is 0.4 msecs. Thus,

node 0 waits for 2.4 msecs4 before NLDC 81 can finish gating. Node 0 then takes 11 msecs to gate

LCs 81 through 110 and NLSC 111 after it receives the data from connection 81 on node 1. Node 1

attempts to gate NLDC 111 while the data from NLSC 81 is being transferred between node 1 and

node 0, and it cannot complete the gating of NLDC 111 until node 0 has gated NLSC 111 and the

data from node 0 has been received by node 1. Thus, node 1 waits 0.4 msecs while the data from

NLSC 81 is being sent to node 0, and node 0 waits 11 msecs plus the time that it takes to transfer

the data for connection 111 from node 0 to node 1 - which is 0.4 msecs. Node I waits a total of

11.8 msecs' before it can complete the gating of NLDC 111, then it takes 3 msecs to gate LCs 112

through 116.

2 See Chapter IV, Table 3.
35 + 0.5 - 1 = 4.5 msecs.
48 + 0.4 - 6 = 2.4 rmsecs.

50.4+ 11 +0.4= 1
1.8 msecs.

114

Summing the time spent gating connections and the time spent waiting to gate connections

yields the following execution times for the node 0 and for node 1,

Teo = 8+1+4.5+6+2.4+llmsecs (24)

= 32.9 msecs (25)

Te = 1+7.5+5+8+11.8+3msecs (26)

= 36.3 msecs (27)

The execution time of the parallel simulation, Tep,, is the maximum of the processor execu-

tion times. Thus, T,, for one iteration of the PDESS using the modified bus object manager for

configuration 2vl is equal to,

T,,,., = Max(Teo,Te1) (28)

= 36.3 msecs (29)

The actual measured time of this configuration 2vl using the modified bus object manager with

fixed Tgt is 36 msecs for one iteration. Thus, the calculated execution time for one iteration is

within 0.8% of the measured execution time.

The time-line graph in Figure 32 provides some insight into how the connections processing

dependencies affect the execution times of each of the processors during a single iteration of the

PDESS. It can be seen that node 0 spends 26 msecs gating connections and 6.9 msecs blocking for

data from node 1. Node 1 spends 17 msecs gating connections and 19.3 msecs blocking for data

from node 0.

Another method of determining the execution time of the PDESS is by using a Performance

and Evaluation Review Technique (PERT) network [42] [18] and determining the critical path

115

co nt pro re sets. 0.5 msecs. 0.4 r secs. 0.4 rn secs. nw r

5 msecs. 8 msecs. 0 msecs.

Figure 33. Configuration 2vl connection gating PERT network.

through the network. Using the PERT network and finding the critical path avoids having to

calculate the waiting times for each of the processors as was done above. A critical path for

configuration 2v1 is determined by using the processing order dependencies information and the

connection processing times of each processor shown in Figure 32, and generating a PERT network

as shown in Figure 33. By finding the critical path from the start node to the finish node, the

execution time of one iteration of the parallel simulation can be determined.

The nodes shown in Figure 33 consist of a start node, a finish node and all the NLSCs and

NLDCs executed by each node in a single iteration of the PDESS simulation for configuration 2vl.

The first node in Figure 33 is the start node. This represents the point at which node 0 and node 1

start gating connections for the first iteration of the simulation. Node NLSC 23 is the first non-local

connection gated by node 0, and the 8 msec time shown from the start node to node NLSC 23 is

the time that it takes node 0 to gate its executive-level connections, the local connections before

NLSC 23, and NLSC 23. NLDC 23 is the first non-local connection that is gated by node 1, and

the 1 msec time shown between the start node to node NLDC 23 is the time that it takes node 1 to

gate its executive level connections and gate NLDC 23. The 0.5 msec time shown between nodes

NLSC 23 and NLDC 23 is the time that it takes to transfer voltage-LCF data between nodes 0 and

1 since connection 23 transfers voltage-LCF. The 0.4 msec time shown between nodes NLSC 81 and

NLDC 81 is the time that it takes to transfer load/current data between nodes since connection

116

81 transfers load/current information. The one msec time between NLSC 23 and NLDC 43 is

the time that it takes node 0 to gate all the local-connections between NLSC 23 and NLDC 43.

The five msec time between NLDC 23 and NLSC 43 is the time that it takes node 1 to gate the

local-connections between NLDC 23 and NLSC 43. The times between the other NLSC and NLDC

nodes are determined from Figure 32 in this same manner. The time between NLSC 111 and the

finish node is the time that it takes node 0 to gate the local connections after NLSC 111, but NLSC

is the last connection gated by node 0 during a single iteration of the PDESS. If a second iteration

had been started then node 0 would have started gating the executive-level connections and the

local system-level connections leading up to NLSC 23 and NLDC 43. (A PERT network analysis

for two iterations of the simulation will be done later in this section.) The time from NLDC 111 to

the finish node is the time that it takes node 1 to finish gating the last local connections on node I

- connections 112 through 116.

The execution time of a single iteration of the simulation is equal to the length of the critical

path for the PERT network shown in Figure 33.6 The critical path length (or time) is the length of

the longest path from the start node through the network to the finish node. The dark arrows in

Figure 33 indicate the critical path through this network. The length of the critical path through

the PERT network is equal to,

8+0.5+ 5 + 8 + 0.4+ 11 +0.4+ 3 = 36.3 msecs

which is the same execution time, T,,.,, calculated using the the time-line graph shown in Figure 32.

Using the PERT network and finding the critical path through the network allows calculating Te,,,

without having to calculate the waiting time or the execution time of each of the processors, but

these values can be calculated from the network if needed. The PERT network is a more concise

representation of the execution time dependencies between each of the processors. The PERT

6 Please refer to [42] or [181 for a description of the technique used to determine the critical path through a PERT
network.

117

network can be built from measurements of the time required to process connections between

NLSCs and NLDCs, and from the measurements of the time from the start of an iteration to the

time that the first NLSC or NLDC is gated and the time required to complete and iteration after

the last NLSC and NLDC are gated.

Figure 34 shows the PERT network for two iterations of the PDESS for configuration 2vl

using the modified bus object manager with fixed Tget. The critical path through the network is

indicated by the darker edges of the network and the critical path has a length of 69.2 msecs, so

the predicted value for Tep.(2) = 69.2 msecs. The actual measured time for two iterations of the

PDESS for configuration 2v1 is 70 msecs. Thus, the predicted T,.(2) and the actual measured

time are very close.

An interesting observation about the execution time of the PDESS for configuration 2v1 can

be made - the value of Te,,. (2) $ 2* Te,. (1) = 72.6 msecs. Due to the fact that node 0 starts on

the second iteration while node 1 is finishing the first, the execution time of the second iteration

is equal to the time of the first iteration minus the time that it takes node 1 to get the data from

node 0 for NLDC 111 minus the time required to finish gating local connections 112 through 116.

The time that it takes node 1 to receive the data from node 0 for connection 111 is 0.4 msecs and

the time that it takes for node 1 to finish gating the last local connections is 3 msecs. Thus, the

time that it takes for two iterations is

T,.,(2) = Te,.,(1) + (Te,,_(1) -3.4) msecs (30)

= 36.3 + 32.9 msecs (31)

= 69.2 msecs. (32)

Each iteration of the simulation after the first iteration will take 32.9 msecs due to node 0 starting

iteration i + 1 in 3.4 msecs before node 1 starts iteration i + 1, and the following equation can be

118

0

1 0

0

S bO

0

119)

Table 7. Calculated and Measured Execution Times for Configuration 2vI with fixed Tg,.
T',, (i)

Iterations Calculated Measured %Difference
1 36 36 1
2 69 70 -1
5 168 170 -1
10 332 336 -1
50 1648 1665 -1
100 3293 3325 -1
250 8228 8310 -1
500 16453 16600 -1
1000 32903 33232 -1

used to predict the execution time of the PDESS for configuration 2v1:

Te,.(i) = Te, ,(1) + (i - 1)(Te,.,(1) - 3.4) msecs (33)

= 36.3 + 32.9(i - 1) msecs. (34)

where i is the number of iterations of the simulation.

Table 7 shows the measured execution times of the PDESS for configuration 2vl, the execution

time calculated using Equation 33, and the percentage difference between the two value- The

percentage difference of the values are determined by using the following equation:

Calculated T,,. (i) - Measured Te,..(i)
%diff = Measured Te,.,. (i) (35)

As can be seen by the small percentage differences of the measured and the calculated execution

times (a maximum %difference of 1.2%), Equation 33 shows a good correlation with the measured

performance results. Given the measured execution times of the sequential simulation and Equa-

tion 33, then the speedup of the PDESS for configuration 2v1 with fixed Tget time can be predicted

within 1.2% of the actual values.

120

Table 8. Calculated and Measured Execution Times for Configuration 2v3 with fixed Tget.
T - (i)

Iterations Calculated Measured %Difference
1 37 38 -2
2 73 74 -1
5 181 180 0
10 360 356 1
50 1791 2158 -17
100 3581 3558 1
250 8952 9247 -3
500 17902 18113 -1
1000 35802 35849 0

Applying the PERT technique described above for configurations 2v3, 2v4, and 4v1, and

deriving equations based on the Tep.(1) and Te,or(2) yields the equations for Te,. (i): 7

Config. 2v3: Te,, (i) = 37.3 + 35.8(i - 1) msecs (36)

Config. 2v4: Te,,.,(i) = 38.8 + 36.2(i - 1) msecs (37)

Config. 4v1: T,,,(i) = 29.6+ 26.2(i- 1)msecs (38)

A comparison of the calculated and the measured execution times for each of these configurations

is shown in Tables 8, tab:2v4-meas-v-calc and tab:4vl-meas-v-calc. Comparing the calculated

and measured execution times shows a %difference of less than 3% or less for all the execution

times calculated using the above equations, except for the configuration 2v3 at 50 iterations. This

deviation may be due to an external factor affecting the measured execution time of simulation

when configuration 2v3 was tested at 50 iterations.8

'Equations for configurations 2v2, 2v5, 4v2 and 8vl were not derived due to limited testing time and publication
deadlines. The PERT analysis technique should generate the same accuracy of results for these configurations.

'Increases in execution time of the PDESS occurred on occassions when other users ran programs on nodes of
the hypercube not allocated to testing the simulation. The deviation in the time for configuration 2v3 is likely due
to such an effect.

121

Table 9. Calculated and Measured Execution Times for Configuration 2v4 with fixed Tt.
T,(i)

Iterations Calculated Measured %Difference
1 39 39 -1
2 75 75 0
5 184 182 1
10 365 360 1
50 1813 1785 2
100 3623 3565 2
250 9053 8909 2
500 18103 17812 2
1000 36203 35614 2

Table 10. Calculated and Measured Execution Times for Configuration 4vl with fixed Tget.
Te.(i)

Iterations Calculated Measured %Difference
1 30 30 -1
2 56 56 0
5 134 135 0
10 265 265 0
50 1313 1337 -2
100 2623 2626 0
250 6553 6526 0
500 13103 13086 0
1000 26203 26092 0

122

7.2 Performance Analysis Summary

The behavior of the PDESS (using the modified bus object manager) can be analyzed using

a PERT network and measurements of the time required to gate connections between NLSCs and

NLDCs from a single iteration of the PDESS simulation. A measurement of the amount of time

spent blocking by a processor is not required in order to use the PERT network analysis method.

Using the results from the PERT network analysis, equations for the execution time of several

versions of the PDESS were derived. These equations showed an accuracy of 5% or better for

calculating the execution time of the tested configurations over the range of one to 1000 iterations.

These equations for the execution time of the PDESS configurations can be used to determine the

potential speedup of the various configurations as a function of the number of iterations of the

simulation.

123

Ill. Conclusions and Rco,nnrndation.s

. S ,ummary of Research Effort

This research effort addressed modifying the design of the DC Electrical System Simulation

(DESS) to allow a parallel implementation of the DESS in order to redut,ce its ,xecutlon ti ue

The DESS was designed using the SEI's OOD Paradigm for Flight Simulators and the design w;aL

modified to allow the DESS to be implemented on an iPSC/2 Hypercube computer a ,lit.ribut,,,

memory MIM D computer. The modifications to the original design were linited to only addinig

extensions to the original design to allow the medium-grain parallelism in the DESS desimn to be

exploited and implnmented on the hypercube. Most of the original design (and code) was left

unmodified because the SEI's Paradigm is designed with the concept of being implemented on a

parallel computer system [30], and this research attempted to provide an example of how a design

based on the SEI Paradigm can be implemented on a parallel computer.

S 2 C' nclu.slons

3. 2. 1 Maxmmum Speedup. The maximum speedup of a particular configuration of the PDESS

is limited by the length of the critical path in its connection gating PERT network as was shown

in Chapter VII. Reducing the length of the critical path for a given configuration should increase

the speedup achieved.

8.2.2 Impact of Variable Workload. Varying workloads can significantly impact the speedup

achieved for any configuration of the PDESS. This was demonstrated in Chapter VT.

8.2.3 Adding Concurrency to the SEI Paradigm. The SEI OOD Paradigm for Flight Simu-

lators can support medium-grain concurrency at the object and connection-gating level. This was

demonstrated in the design and implementation of the PDESS, and in the concurrency analysis

124

in Chapter IV. Modifications are required in the design and implementation of "systems" and

connections in order to support this level of concurrency.

8. .4 "Object-based" Paradigm. The SEI GOD Paradigm is not a "true" object-oriented

design method, but it provides a good structured method of implementing a flight simulation using

an "object-based" design. The paradigm is not truly object-oriented because several objects are

grouped into a single object by the paradigm. In other words, the paradigm does not generate as

many objects as would be generated by applying an object-oriented design methodology such as

that presented by Booch [8]. This difference in design is due to the design goal of the paradigm to

reduce the nesting of objects, and the design method presented in the paradigm meets this goal.

8.3 Summary of Contributions

8.3.1 Extensions for Parallel Design. The design of the DC Electrical System Simulation

was modified to provide a parallel design by introducing the following design extensions to the SEI

Paradigm:

" Local and non-local source and destination connections. The local connections are connections

between objects on the same processor, and non-local connections are connections between

objects on different processors.

" "Systems" were modified to support the gating of local and non-local connections using a

single gate procedure, and a topological list method is used to allow the gating of connections

such that the connection processing-order dependencies are handled properly. The topological

list is a linear list of connections that can be processed in order from the first connection in

the list to the last, and all the connection processing order dependencies will be met. When a

non-local connection is gated and the source for the connection is on another processor, then

the gating of the connections is blocked until the source data is received from the processor

125

with the source connection. By blocking the connection processing until the source data is

received, the pro-essing-order dependencies are maintained.

" System Aggregates were modified to support system objects being distributed over several

processors. In the original design, a system aggregate instantiates all the objects in a system

and provides named access to all the objects that are part of the system. In the parallel

design, a system aggregate is on each processor and it only instantiates those objects that are

mapped to that processor for that system. It provides location information for objects that

are instantiated on other processors.

* The design of the "executive" was not modified in the parallel design, but the executive

connections were modified to support local and non-local connections. A copy of the executive

is instantiated on each processor in the parallel system.

The parallel implementation of the DC Electrical System Simulation provides an example of

implementing a design using these design extensions. These design extensions are changes that can

be applied to other simulations designed using the SEI OOD Paradigm to derive a parallel design.

8.3.2 Performance Analysis Technique. This research showed how PERT networks can be

used to describe and analyze the performance of a parallel simulation design using the SEI Paradigm

and the extensions noted above. The PERT network provides a way to analyze the performance of

a given object mapping and to model the performance. If the connection gating time between non-

local connections can be determined prior to implementing the parallel design, it may be possible

to gain some insight into the potential speedup that can be gained by parallelizing the simulation.

8.3.3 Performance Considerations. The effect of changes in computational workload was

demonstrated and analyzed for the parallel DC Electrical System (PDESS). As steady state con-

ditions were reached by the objects in the PDESS, the value of Tget of buses decreased and the

execution time per iteration (TPI) of the simulation decreased. The sequential simulation showed

126

a 350% decrease in execution TPI due to Tget decreasing, but the parallel simulation showed less

of a decrease in execution TPI. Thus, after five or more iterations the parallel simulation showed

a slowdown instead of a speedup due to a smaller decrease in TPI than the sequential simulation.

The smaller decrease in TPI of the parallel simulation was due to communication overhead staying

the same when computational time was decreasing in proportion to Tget decreasing. When Tet for

the buses was held constant, then a consistent speedup (or slowdown) was measured for most all

of the tested configurations.

The change from a speedup to a slowdown for the PDESS demonstrates the effects of changes

in computation workload on performance. These changes in computational workload can adversely

affect speedup - as was demonstrated in the tests of the PDESS using the unmodified bus object

manager with variable T,t.

8.4 Recommendations for Further Research

A method of extending the SEI's OOD Paradigm to support the design and implementation

of a single flight simulation subsystem was demonstrated and tested. The following topics are

recommendations for future research:

" Determine if the PERT analysis method presented in Chapter VII can be used to predict the

expected performance of a simulation based on data from a sequential version of the simula-

tion. If the PERT method can be used to predict the potential speedup that can be achieved

by parallelizing a particular simulation, then a determination can be made as to whether the

potential increase in performance is worth the effort of parallelizing the simulation.

" Modify the PDESS to implement a circuit model that has a higher level of parallelism in the

basic simulation algorithm. The circuit model implemented by the SEI in the original de-

sign has complex connection gating dependencies, and these dependencies limit the potential

127

speedup that can be gained. If a simulation model for the circuit can be designed that has

more parallelism, then the potential speedup will be higher.

" Determine and characterize the effects on speedup for changes in the ratio of computational

workload to communications overhead (computational grain size) for a parallel simulation

built using the method presented in this research. This can provide insight into what com-

putational grain sizes are appropriate to achieve a speedup for the parallel designs that can

be developed using the SEI paradigm and the extensions presented in this research.

* Implement and test the PDESS design on a shared memory architecture. This research could

determine if the design extensions used for implementing the PDESS can be applied to a

shared memory architecture, or if the extensions required for implementing a parallel design

on a shared memory machine are different from those presented in this research.

" Use the SEI OOD Paradigm as the basis for building a discrete-event simulation paradigm for

sequential and distributed OOD simulations. Gating of connections could be the events that

are scheduled. The research should focus on what extensions are required to the paradigm to

support events and scheduling of events.

1

128

Appendix A. Building the DESS and the PDESS

A.1 PDESS Build File

Two executable files are required to run the Parallel DC Electrical System Simulation on the

AFIT iPSC/2 Hypercube. These programs are:

" The simulation program that runs on the iPSC/2 host, host-main.

* The simulation program that runs on the iPSC/2 nodes, Test-sim.a.

The following is a listing of a batch file that can be used to build the parallel DC Electrical System

code:

a.mklib
a.path -a /usr/ipsc/ada/lib
ada VCHARUTIL.a # Spec. for the character utilities package
ada VSTRINGTL.a # Spec. for the string utilites package
ada global..a # Spec. for the global types
ada el.a # Spec. for the electrical units
ada flt_names_.a # Spec. for the flight system names
ada bus_.a # Spec. for the Bus Object Manager
ada cb_.a # Spec. for the Circuit Breaker Object Manager
ada tru_.a # Spec. for the TRU Object Manager
ada dc_.a # Spec. for the DC Power System
ada ac.agghost_.a # Spec. for host version of AC Power System Agg.
ada dc-agg.host_.a # Spec. for host version of DC Power System Agg.
ada dsagg.host_,a # Spec. for host version of Dummy System Power System Agg.
ada ac-agg_.a # Spec. for node version of AC Power System Agg.
ada dcagg_.a U Spec. for node version of DC Power System Agg.
ada ds-agg_.a * Spec. for node version of Dummy System Power System Agg.
ada cb.link.a * Spec. for the Circuit Breaker Linkage Package
ada fl-conn.a # Spec. for Flight Executive Connections
ada fl..a # Spec. for Flight Executive
ada BCHARUTIL.a # Body for the character utilities package
ada BSTRIIGTL.a S Body for the string utilities package
ada tru.a # Body for TRU Object Manager
ada bus.a # Body for Bus Object Manager
ada cb.a S Body for Circuit Breaker Object Manager
ada cb-link.a * Body for Circuit Breaker Linkage package
ada ac-agg.a U Body for node version of AC Power System Agg.
ada dc-agg.a # Body for node version of DC Power System Agg.
ada ds-agg.a # Body for node version of Dummy System Power System Agg.

129

ada dc.a # Body for DC Power System
ada fl-conn.a # Body for Flight Executive Connections
ada fl.a # Body for Flight Executive

echo "Making the host-sim.a HOST simulation program..."

ada -o host-sim -lhost -lsocket -M host-sim.a

echo "Making the Test-sim.a NODE simulation program..."
ada -o test-sim -inode -M Test-sim.a

Executing the above batch file will build a version of the PDESS that has the bus object

manager with variable Tg,,t times. Compile and link the program long-bus. a with the node program

using the following commands to build a version of the PDESS with fixed T,,t time for the bus

object manager:

ada long-bus.a
a.ld test-sim -inode -o testsim

A.2 Running the PDESS Simulation

The PDESS simulation is started by entering the executable file name, test-sim, at the

UNIX prompt. The program will prompt the user for all required information, and will read

object mapping information from the files ac-cfg. ext, dc-cfg. ext and ds-cfg. ext. The filename

extension, .ext, is entered by the user at run time and the object mapping files with this extension

should be created prior to running the program.

The state of all the objects in the simulation can be printed using the "print state of objects"

menu option. The number of iterations to be executed by the simulation is specified by the user,

or the user can have the simulation automatically run a series of test runs for increasing numbers

of iterations from 1 to 1000. Also, the user may specify how many times the simulation is to be

run using the same number of iterations, e.g., the user can specify that the simulation be run for

500 iterations three times. This feature is provided to allow running the same number of iterations

to determine any variation in timing results.

130

Timing results can be affected by more than one user executing programs on separate parts

of the AFIT iPSC/2 Hypercube. All the results reported in this research were collected with the

PDESS being the only program executing on the hypercube when two or more nodes were used for

testing. No other programs were running on any unused nodes.

A.3 DESS Build File

The following batch file builds the sequential version of the DC Electrical System Simulation

that executes on a single node the iPSC/2 Hypercube.

a.mklib
a.path -a /usr/ipsc/ada/lib

ada VCHARUTIL.a # Spec. of character-utilities

ada BCHARUTIL.a # Body of character-utilities
ada VSTRINGTL.a # Spec. of string-utilities

ada BSTRINGTL.a # Body of string-utilities
ada comm-globals.a # Spec. of comm.globals

echo "Making the host-main.a HOST program for seq. simulation program..."
ada -o host-main -lhost -Isocket -M host-main.a

ada VCHARUTIL.a # Spec. of character-utilities
ada BCHARUTIL.a # Body of character-utilities

ada dc_.a # Spec. of dc-powersystem
ada VSTRINGTL.a # Spec. of string-utilities

ada BSTRINGTL.a # Body of string-utilities
ada el.a # Spec. of electrical-units

ada tru_.a # Spec. of truobject.manager
ada tru.a # Body of tru-objectjmanager
ada fl-conn.a # Spec. of flightexecutive.connections

ada commglobals.a # Spec. of comm.globals

ada flt-names_.a # Spec. of flightsystem-names
ada bus_.a # Spec. of bus.objectmanager
ada long-bus.a # Body of busobject.manager

ada global-.a # Spec. of global-types
ada ac-agg .a # Spec. of actpower.systemaggregate
ada cb_.a # Spec. of cb.objectmanager

ada cb.a # Body of cb.object-manager

ada dummyagg_.a # Spec. of dumysystem.aggregate
ada dc.agg_.a # Spec. of dc.power.systemaggregate
ada cb-link.a # Spec. of cblinkage-interface
ada cb-link.a # Body of cb.linkage.interface

131

ada llconn.a # Body of flight-executiveconnections

ada dc.a # Body of dc-powersystem

ada 1l_.a # Spec. of flight-executive

ada fl.a # Body of flight-executive

echo "Making the node-main.a NODE program for seq. simulation program..."

ada -o node-main -lnode -M node-main.a

.4.4 Running the PDESS Simulation

The DESS program created using the batch file shown above is executed by entering the

executable file name, host-main. The menu interface is the same as that used for the parallel

version of the simulation.

132

Bibliography

1. Akl, Selim G. The Design and Analysis of Parallel Algorithms. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc, 1989.

2. Baezner, Dirk, et al. "Sim++: The Transition to Distributed Simulation." Proceedings of the
SCS Multiconference on Distributed Simulation22. Simulation Series. 211-218. 1990.

3. Bain, William L. "A Global Object Name Space for the Intel Hypercube." The Third Confer-
ence on Hypercube Concurrent Computers and Applications1. 562-567. January 1988.

4. Bain, William L. and Shala Arshi. "Hypersim: A Hypercube Simulator for Parallel Systems
Performance Modeling." The Third Conference on Hypercube Concurrent Computers and Ap-
plicationsl. 792-799. January 1988.

5. Beckman, Brian, et al. "Distributed Simulation and Time Warp Part 1: Design of Collid-
ing Pucks." Proceedings of the SCS Multiconference on Distributed Simulation19. Simulation
Series. 56-60. 1988.

6. Bensley, E. H., et al. Distributed Object Oriented Programming. Technical Report RADC-
TR-89-339, The MITRE Corporation, February 1990 (AD-A219 689).

7. Booch, Grady. Software Components with Ada. The Benjamin/Cummings Publishing Com-
pany, Inc., 1987.

8. Booch, Grady. Object Oriented Design with Applications. The Benjamin/Cummings Publish-
ing Company, Inc., 1991.

9. Chandy, K. M. and J. Misra. "Asynchronous Distributed Simulation via a Sequence of Parallel
Computations," Communications of the ACM, 24:198-206 (April 1981).

10. Chandy, K. Mani and Jayadev Misra. Parallel Program Design: A Foundation. Reading,
Massachusetts: Addison-Wesley Publishing Company, Inc, 1989.

11. Cohen, Neil and Joseph Reynolds. "System Test Environment: A Real-Time, Man-In-The-
Loop Fleet Simulator to Suppport Testing of Development Equipment." Proceedings of the
SCS Multiconference on Object Oriented Simulation, edited by Antonio Guasch. 23-37. San
Diego, California: Simulation Councils, Inc., 1990.

12. Cohen, Norman H. Ada as a Second Language. McGraw-Hill Book Company, 1986.

13. Corbin, M.J. and G. F. Butler. "A Toolkit for Object-Oriented Simulation in Ada." Proceedings
of the SCS Multiconference on Object Oriented Simulation, edited by Antonio Guasch. 13-18.
San Diego, California: Simulation Councils, Inc., 1990.

14. DeCegama, Angel L. The Technology of Parallel Processing: Parallel Processing Architectures
and VLSI Hardware, 1. Prentice-Hall, Inc., 1989.

15. Deitel, Harvey M. An Introduction to Operating Systems. Reading, Massachusetts: Addison-
Wesley Publishing Company, Inc, 1990.

16. Department of Defense. The Department of Defense Critical Technologies Plan for the Com-
mittees on the Armed Services United States Congress. Technical Report AD-A219 300. March
1990.

17. Doyle, Robert J. "Object-Oriented Simulation Programming." Proceedings of the SCS Mul-
ticonference on Object Oriented Simulation, edited by Antonio Guasch. 1-6. San Diego,
California: Simulation Councils, Inc., 1990.

133

18. Eris, Rene L. and Bruce N. Backer. An Introduction to PERT-CPM. Richard D. Irwin, Inc..
1964.

19. Fox, Geoffrey C. and others. Solving Problems on Concurrent Processors: General Techniques
and Regular Problems, 1. Englewood Cliffs, New Jersey: Prentice-Hall, Inc, 1988.

20. Fujimoto, Richard M. "Performance Measurements of Distributed Simulation Strategies."
Proceedings of the SCS Multicunfeence on Distributed Simulation19. Simulation Series. 14-
20. 1988.

21. Fujimoto, Richard M. "Performance of Time Warp Under Synthetic Workloads." Proceedings
of the SCS Multiconference on Distributed Simulation22. Simulation Series. 23-28. 1990.

22. Guasch, Antonio, editor. Proceedings of the SCS Multiconference on Object Orzented Simula-
tion, San Diego, California: Simulation Councils, Inc.

23. Hartrum, Thomas C. and Brian J. Donlan. "Distributed Battle-Management Simulation on a
Hypercube." Proceedings of the SCS Multiconference on Distributed Simulation 19. Simulation
Series. 3-7. 1988.

24. Herring, Charles. "ModSim: A New Object-Oriented Simulation Language." Proceedings of
the SCS Multiconference on Object Oriented Simulation, edited by Antonio Guasch. 55-60.
San Diego, California: Simulation Councils, Inc., 1990.

25. Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data Structures in Pascal. Rockville,
Maryland: Computer Science Press, Inc., 1982.

26. Intel Corporation. iPSC/2 ADA Programmer's Reference Manual, 1990.

27. Kushner, Edward J. "Parallel Simulation Using the iPSC/2." Proceedings of the SCS Multi-
conference on Distributed Simulation22. Simulation Series. 91-94. 1990.

28. Lamont, Gary B. and others. "Compendium of Parallel Programs for the iPSC Computers."
Vol. 2, Ver. 1.5, Research, December 1990.

29. Lee, Kenneth J. and Michael S. Rissman. An Object-Oriented Solution Example: A Flight
Simulator Electrical System. Technical Report CMU/SEI-89-TR-5, Software Engineering In-
stitute, 1989 (AD-A219 190).

30. Lee, Kenneth J., et al. An OOD Paradigm for Flight Simulators, 2nd Edition. Technical
Report CMU/SEI-88-TR-30, Software Engineering Institute, 1988 (AD-A204 849).

31. Lin, Yi-Bing and Edward D. Lazowska. "Optimality Considerations of 'Time Warp' Parallel
Simulation." Proceedings of the SCS Multiconference on Distributed Simulation22. Simulation
Series. 29-34. 1990.

32. Lomow, Greg and Dirk Baezner. "A Tutorial Introduction to Object-Oriented Simulation and
Sim++." 1989 Winter Simulation Conference Proceedings. 140-146. 1989.

33. McNear, Andrew. Improved Task Scheduling for Parallel Simulations. MS thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, December 1991.

34. Misra, J. "Distributed Discrete-Event Simulation," Computing Surveys, 18:39-65 (March
1986).

35. Nicol, David M. "Mapping a Battlefield Simulation onto Message-Passing Parallel Architec-
tures." Proceedings of the SCS Multiconference on Distributed Simulation 19. Simulation Series.
141-146. 1988.

36. Nicol, David M. "Performance Bounds on Parallel Self-Initiating Discrete-Event Simulations,"
ACM Transactions on Modeling and Computer Simulations, 1:24-50 (January 1991).

134

37. O'Brien, David W. and John B. Gilmer. "Mixed Event- and Time-Stepped Parallel Simula-
tion." Proceedings of tue SCS Multiconference on Distributed Simulation21. Simulation Series.
197-202. 1989.

38. Pegden, C. Dennis, et al. "How Technology Limits Simulation Methodology." 1989 Winter
Simulation Conference Proceedings. 686-691. 1989.

39. Reed, Daniel A. and Allen D. Malony. "Parallel Discrete Event Simulation: The Chandy-Misra
Approach." Proceedings of the SCS Multiconference on Distributed Simulation19. Simulation
Series. 8-13. 1988.

40. Sarter, JoAnn M. Optimal Iterative Task Scheduling for Parallel Simulations. MS thesis, Air
Force Institute of Technology, Wright-Patterson AFB, OH, May 1991.

41. Spicer, Kelly L. Mapping an Object-Oriented Requirements Analysis to a Design Architecture
that Supports Design and Components Reuse. MS thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, December 1990.

42. Stilian, Gabriel N. and others. PERT: A New Management Planning and Control Tcchlniquc.
New York: American Management Association, 1962.

43. Su, Wcn-King and Charles L. Seitz. "Variants of the Chandy-Misra-Bryant Distributed
Discrete-Event Simulation Algorithm." Proceedings of the SCS Multiconference on Distributed
Simulation21. Simulation Series. 38-43. 1989.

44. Wieland, Frederick, et al. "Implementing a Distributed Combat Simulation on the Time
Warp Operating System." The Third Conference on Hypercube Concurrent Computers and
Applications2. 1269-1276. January 1988.

45. Yu, Qing, et al. "Time-driven Parallel Simulation of Multistage Interconnection Networks."
Proceedings of the SCS Multiconference on Distributed Simulation21. Simulation Series. 191-
196. 1989.

135

